Is the treatment with psychostimulants in children and adolescents with attention deficit hyperactivity disorder harmful for the dopaminergic system?

  • Manfred Gerlach
  • Edna Grünblatt
  • Klaus W. Lange
Review Article


A major concern regarding psychostimulant medication (amphetamine and methylphenidate) in the treatment of children and adolescents with attention deficit/hyperactivity disorder (ADHD) are the potential adverse effects to the developing brain, particularly in regard to dopaminergic brain function. The present review focuses on the pharmacology of these psychostimulants, their mode of action in the human brain and their potential neurotoxic effects to the developing brain in animals, particularly concerning DA brain function. The potential clinical significance of these findings for the treatment of ADHD in children and adolescents is discussed. Studies on sensitization to psychostimulants’ rewarding effects, which is a process expected to increase the risk of substance abuse in humans, are not included. The available findings in non-human primates support the notion that the administration of amphetamine and methylphenidate with procedures simulating clinical treatment conditions does not lead to long-term adverse effects in regard to development, neurobiology or behaviour as related to the central dopaminergic system.


Methylphenidate Amphetamine ADHD Dopamine neurotoxicity Parkinson’s disease Dopamine transporter 


  1. AACCP Official Action (2002) Practice parameter for the use of stimulant medications in the treatment of children, adolescents, and adults. J Am Acad Child Adolesc Psychiatry 41(Suppl 2):26S–49SGoogle Scholar
  2. Advokat C (2007) Update on amphetamine neurotoxicity and its relevance to the treatment of ADHD. J Attent Disord 11(1):8–16CrossRefGoogle Scholar
  3. Arnold LE (2000) Methylphenidate versus amphetamine: a comparative review. In: Greenhill LL, Osman BB (eds) Ritalin, theory and practice. Mary Ann Liebert, New Rochelle, pp 127–139Google Scholar
  4. Bock N, Gerlach M, Rothenberger A (2010) Postnatal brain development and psychotropic drugs. Effects on animals and animal models of depression and attention-deficit/hyperactivity disorders. Curr Pharm Design 16:2474–2483CrossRefGoogle Scholar
  5. Buchhorn R, Conzelmann A, Willaschek C, Störk D, Taurines R, Renner T (2012) Heart rate variability and methylphenidate in children with ADHD. ADHD Atten Defic Hyperact Disord 4:85–91CrossRefGoogle Scholar
  6. Christine CW, Garwood ER, Schrock LE, Austin DE, McCulloch CE (2010) Parkinsonism in patients with a history of amphetamine exposure. Mov Disord 25:228–231PubMedCrossRefGoogle Scholar
  7. Diaz Heijtz R, Kolb B, Forssberg H (2003) Short communication. Can a therapeutic dose of amphetamine during pre-adolescence modify the pattern of synaptic organization in the brain? Eur J Neurosci 18:3394–3399PubMedCrossRefGoogle Scholar
  8. Eriksen J, Jorgensen TN, Gether U (2010) Regulation of dopamine transporter function by protein–protein interactions: new discoveries and methodological challenges. J Neurochem 113(1):27–41PubMedCrossRefGoogle Scholar
  9. Gainetdinov RR (2010) Strengths and limitations of genetic models of ADHD. ADHD Atten Defic Hyperact Disord 2:21–30CrossRefGoogle Scholar
  10. Garwood ER, Bekele W, McCulloch CE, Christine CW (2006) Amphetamine exposure is elevated in Parkinson’s disease. Neurotoxicology 27:1003–1006PubMedCrossRefGoogle Scholar
  11. Gerlach M, Riederer P (1996) Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm 103:987–1041PubMedCrossRefGoogle Scholar
  12. Gerlach M, Banaschewski T, Warnke A, Rothenberger A (2003) Ist ein Parkinson-Syndrom als Spätfolge einer Methylphenidat-Behandlung im Kindesalter möglich? Eine empirische Standortbestimmung. Nervenheilkunde 22:80–84Google Scholar
  13. German CL, Hanson GR, Fleckenstein AE (2012) Amphetamine and methamphetamine reduce striatal dopamine transporter function without concurrent dopamine transporter relocalization. J Neurochem 123:288–297PubMedCrossRefGoogle Scholar
  14. Gill KE, Pierre PJ, Daunais J, Bennett AJ, Martelle S, Gage HD, Swanson JM, Nader MA, Porrino LJ (2012) Chronic treatment with extended release methylphenidate does not alter dopamine systems or increase vulnerability for cocaine self-administration: a study in nonhuman primates. Neuropsychopharmacology 37(12):2555–2565PubMedCrossRefGoogle Scholar
  15. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612PubMedCrossRefGoogle Scholar
  16. Gray JD, Punsoni M, Tabori NE, Melton JT, Fanslow V, Ward M, Zupan B, Menzer D, Rice J, Drake CT, Romeo RD, Brake WG, Torres-Reveron Am Milner TA (2007) Methylphenidate administration to juvenile rats alters brain areas involved in cognition, motivated behaviours, appetite, and stress. J Neurosci 27:7196–7207PubMedCrossRefGoogle Scholar
  17. Grünblatt E, Gerlach M (2012). Letter to the editor: methylphenidate exposure induces dopamine neuron loss and activation of microglia in the basal ganglia of mice. Plos One (
  18. Grund T, Teuchert-Noodt G, Busche A, Neddens J, Brummelte S, Moll GH, Dawirs RR (2007) Administration of oral methylphenidate during adolescence prevents suppressive development of dopamine projections into prefrontal cortex and amygdala after an early pharmacological challenge in gerbils. Brain Res 1176:124–132PubMedCrossRefGoogle Scholar
  19. Halliday G, McRitchie D, Cartwright H, Pamphlett R, Hely M, Morris J (1996) Midbrain neuropathology in idiopathic Parkinson’s disease and diffuse Lewy body disease. J Clin Neurosci 3:52–60PubMedCrossRefGoogle Scholar
  20. Hannestad J, Gallezot JD, Planeta-Wilson B, Lin SF, Williams WA, van Dyck CH, Malison RT, Carson RE, Ding Y-S (2010) Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo. Biol Psychiatry 68(9):854–860PubMedCrossRefGoogle Scholar
  21. Heikkila RE, Orlansky H, Mytilineou C, Cohen C (1975) Amphetamine: evaluation of d-and l-isomers as releasing agents and uptake inhibitors for 3H-dopamine and 3H-norepinephrine in slices of rat neostriatum and cerebral cortex. J Pharmacol Exp Ther 194:47–56PubMedGoogle Scholar
  22. Huang Y-S, Tsai M-H (2011) Long-term outcomes with medications for attention-deficit hyperactivity disorder. Current status of knowledge. CNS Drugs 25:539–554PubMedCrossRefGoogle Scholar
  23. Iversen L (ed) (2006) Speed, ecstasy, ritalin. The science of amphetamines, OxfordGoogle Scholar
  24. Kuczenski R, Segal DS (1997) Effects of Methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem 68:2032–2037PubMedCrossRefGoogle Scholar
  25. Lange KW, Reichl S, Lange KM, Tucha L, Tucha O (2010) The history of attention deficit hyperactivity disorder. Atten Defic Hyperact Disord 2:241–255Google Scholar
  26. Markowitz JS, Straughn AB, Patrick KS, DeVane C, Pestreich L, Lee J, Wang Y, Munitz R (2003) Pharmacokinetics of methylphenidate after oral administration of two modified-release formulations in healthy adults. Clin Pharmacokinet 42:393–401PubMedCrossRefGoogle Scholar
  27. Markowitz JS, DeVane CL, Pestreich LK, Patrick KS, Muniz R (2006) A comprehensive in vitro screening of d-, l-, and dl-threo-methylphenidate: an exploratory study. J Child Adolesc Psychopharmacol 16(6):687–698PubMedCrossRefGoogle Scholar
  28. Moll GH, Hause S, Ruther E, Rothenberger A, Hüther G (2001) Early methylphenidate administration to young rats causes a persistent reduction in the density of striatal dopamine transporters. J Child Adolesc Psychopharmacol 11(1):15–24PubMedCrossRefGoogle Scholar
  29. Nakashima K, Kaddoumi A, Ishida Y, Itoh Z, Taki K (2003) Determination of methamphetamine and amphetamine in abuser’s plasma and hair samples with HPLC-FL. Biomed Chromatogr 17:471–476PubMedCrossRefGoogle Scholar
  30. Pearl RG, Seiden LS (1979) d-Amphetamine-induced increase in catecholamine synthesis in the corpus striatum of the rat: persistence of the effect after tolerance. J Neural Transm 44:21–38PubMedCrossRefGoogle Scholar
  31. Peters FT, Samyn N, Wahl M, Kraemer T, De Boeck G, Maurer HH (2003) Concentrations and ratios of amphetamine, methamphetamine, MDA, MDMA and MDEA enantiomers determined in plasma samples from clinical toxicology and driving under the influence of drugs cases by GC-NICI-MS. J Anal Toxicol 27:552–559PubMedCrossRefGoogle Scholar
  32. Quinn D, Wigal S, Swanson J, Hirsch S, Ottolini Y, Dariani M, Roffman M, Zeldis J, Cooper T (2004) Comparative pharmacodynamics and plasma concentrations of d-threo-methylphenidate hydrochloride after single doses of d-threo-methylphenidate hydrochloride and d, l-threo-methylphenidate hydrochloride in a double-blind, placebo-controlled, crossover laboratory school study in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 43:1422–1429PubMedCrossRefGoogle Scholar
  33. Ricaurte GA, Mechan AO, Yuan J, Hatzidimitriou G, Xie T, Mayne AH, McCann UD (2005) Amphetamine treatment similar to that used in the treatment of adult attention-deficit/hyperactivity disorder damages dopaminergic nerve endings in the striatum of adult nonhuman primates. J Pharmacol Exp Ther 315:91–98PubMedCrossRefGoogle Scholar
  34. Riccardi P, Li R, Ansari MS, Zahld D, Park S, Dawant B, Andersen S, Doop M, Woodward N, Schoenberg E, Schmidt D, Baldwin E, Kessler R (2006) Amphetamine-induced displacement of [18F] fallypride in striatum and extrastriatal regions in humans. Neuropsychopharmacology 31:1016–1026PubMedCrossRefGoogle Scholar
  35. Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in Parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm 38:277–301PubMedCrossRefGoogle Scholar
  36. Robinson TE, Camp DM (1987) Long-lasting effects of escalating doses of d-amphetamine on brain monoamines, amphetamine-induced stereotyped behaviour and spontaneous nocturnal locomotion. Pharmacol Biochem Behav 26:821–827PubMedCrossRefGoogle Scholar
  37. Roessner V, Sagvolden T, DasBanerjee T, Middleton FA, Faraone SV, Walaas SI, Becker A, Rothenberger A, Bock N (2010) Methylphenidate normalizes elevated dopamine transporter densities in an animal model of the attention-deficit/hyperactivity disorder combined type, but not the same extend in one of the attention-deficit/hyperactivity disorder inattentive type. Neuroscience 167:1183–1191PubMedCrossRefGoogle Scholar
  38. Rash JA, Aguirre-Camacho A (2012) Attention-deficit hyperactivity disorder and cardiac vagal control: a systematic review. ADHD Atten Defic Hyperact Disord 4:167–177CrossRefGoogle Scholar
  39. Ryan LJ, Martone ME, Linder JC, Groves PM (1988) Brief communication. Continuous amphetamine administration induced tyrosine hydroxylase immunoreactive patches in the adult rat neostriatum. Brain Res Bull 21:133–137PubMedCrossRefGoogle Scholar
  40. Sadasivan S, Pond BP, Pani AK, Qu C, Jiao Y, Smeyne RJ (2012) Methylphenidate exposure induces dopamine neuron loss and activation of microglia in the basal ganglia of mice. PLoS ONE 7(3):e33693m. doi:10.1371/journal.pone.0033693 CrossRefGoogle Scholar
  41. Schmitz Y, Benoit-Marand M, Gonon F, Sulzer D (2003) Presynaptic regulation of dopaminergic neurotransmission. J Neurochem 87:273–289PubMedCrossRefGoogle Scholar
  42. Shaw P (2011) ADHD medications and cardiovascular risk: some heartening news. JAMA 306:2723–2724PubMedCrossRefGoogle Scholar
  43. Sontag TA, Tucha O, Walitza S, Lange KW (2010) Animal models of attention deficit/hyperactivity disorder (ADHD): a critical review. ADHD Atten Defic Hyperact Disord 2:1–20CrossRefGoogle Scholar
  44. Soto PL, Wilcox KM, Zhou Y, Ator NA, Riddle MA, Wong D, Weed MR (2012) Long-term exposure to oral methylphenidate or dl-amphetamine mixture in peri-adolescent rhesus monkeys: effects on physiology, behavior, and dopamine system development. Neuropsychopharmacology 37:2566–2579PubMedCrossRefGoogle Scholar
  45. Stopper H, Walitza S, Warnke A, Gerlach M (2008) Brief review of available evidence concerning the potential induction of genomic damage by methylphenidate. J Neural Transm 115:331–334PubMedCrossRefGoogle Scholar
  46. Swanson JM, Volkow ND (2001) Pharmacokinetic and pharmacodynamic properties of methylphenidate in humans. In: Solanto MV, Arnsten AFT, Castellanos FX (eds) Stimulant drugs and ADHD. Oxford University Press, Oxford, pp 259–282Google Scholar
  47. Swanson JM, Volkow ND (2003) Serum and brain concentrations of methylphenidate: implications for use and abuse. Neurosci Biobehav Rev 27:615–621PubMedCrossRefGoogle Scholar
  48. Taylor KM, Snyder SH (1974) Amphetamine: differentiation by d and l isomers of behaviour involving brain norepinephrine or dopamine. Science 168:1487–1489CrossRefGoogle Scholar
  49. Volkow ND (2012) Long-term safety of stimulant use for ADHD: findings from nonhuman primates. Neuropsychopharmacology 37:2551–2552PubMedCrossRefGoogle Scholar
  50. Volkow ND, Insel TR (2003) Editorial. What are the long-term effects of methylphenidate treatment? Biol Psychiatry 54:1307–1309PubMedCrossRefGoogle Scholar
  51. Volkow ND, Wang GJ, Fowler JS, Fischman M, Foltin R, Abumrad NN, Gatley SJ, Logan J, Wong C, Gifford A, Ding Y-S, Hitzemann R, Pappas N (1999) Methylphenidate and cocaine have a similar in vivo potency to block dopamine transporters in the human brain. Life Sci 65:PL7–12PubMedCrossRefGoogle Scholar
  52. Volkow ND, Wang G-J, Fowler JS, Logan J, Gerasimov M, Maynard L, Ding Y-S, Gatley SJ, Gifford A, Franceschi D (2001) Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human bran. J Neurosci 21:RC121(1–5)Google Scholar
  53. Volkow ND, Wang GJ, Fowler JS, Telang F, Maynard L, Logan J, Gatley SJ, Pappas N, Wong C, Vaska P, Zhu W, Swanson JM (2004) Evidence that methylphenidate enhances the saliency of a mathematical task by increasing dopamine in the human brain. Am J Psychiatry 161:1173–1180PubMedCrossRefGoogle Scholar
  54. Walitza S, Melfsen S, Herhaus G, Scheuerpflug P, Warnke A, Müller T, Lange KW, Gerlach M (2007) Association of Parkinson’s disease with symptoms of attention deficit hyperactivity disorder in childhood. J Neural Transm 72(Suppl):311–315CrossRefGoogle Scholar
  55. Yuan J, McCann U, Ricaurte G (1997) Methylphenidate and brain dopamine neurotoxicity. Brain Res 767:172–175PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Manfred Gerlach
    • 1
  • Edna Grünblatt
    • 2
  • Klaus W. Lange
    • 3
  1. 1.Department for Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity of WürzburgWürzburgGermany
  2. 2.Department for Child and Adolescent PsychiatryUniversity of ZurichZurichSwitzerland
  3. 3.Department of Experimental PsychologyUniversity of RegensburgRegensburgGermany

Personalised recommendations