Toward a better understanding of ADHD: LPHN3 gene variants and the susceptibility to develop ADHD

  • Mauricio Arcos-Burgos
  • Maximilian MuenkeEmail author
Review Article


During the past 15 years, an impressive amount of genetic information has become available in the research field of psychiatry, particularly as it relates to attention-deficit/hyperactivity disorder (ADHD). However, the classical clinical approach to ADHD has minimally affected and not significantly been improved by this genetic revolution. It is difficult to predict how long it will take for genetic findings to alter the way clinicians treat patients with ADHD. New medications or treatment protocols may take years to become routine clinical practice. However, when taken together, recent successes in genomics, pharmacogenomics, and genetic epidemiology have the potential (1) to prevent comorbid consequences of ADHD, (2) to individualize therapies for patients with ADHD, and (3) to define new epidemiological policies to aid with the impact of ADHD on society. Here, we present an overview of how genetic research may affect and improve the quality of life of patients with ADHD: as an example, we use the discovery of LPHN3, a new gene in which variants have recently been shown to be associated with ADHD.


ADHD Complex trait Gene Genetics LPHN3 Latrophilin 



The authors declare no competing financial interests. This research was supported by funds of the NHGRI intramural research program, NIH, Bethesda, MD, USA.


  1. Acosta MT, Arcos-Burgos M, Muenke M (2004) Attention deficit/hyperactivity disorder (ADHD): complex phenotype, simple genotype? Genet Med 6(1):1–15CrossRefPubMedGoogle Scholar
  2. Arcos-Burgos M, Acosta MT (2007) Tuning major gene variants conditioning human behavior: the anachronism of ADHD. Curr Opin Genet Dev 17(3):234–238CrossRefPubMedGoogle Scholar
  3. Arcos-Burgos M, Muenke M (2002) Genetics of population isolates. Clin Genet 61(4):233–247CrossRefPubMedGoogle Scholar
  4. Arcos-Burgos M, Castellanos FX, Lopera F, Pineda D, Palacio JD, Garcia M et al (2002) Attention-deficit/hyperactivity disorder (ADHD): feasibility of linkage analysis in a genetic isolate using extended and multigenerational pedigrees. Clin Genet 61(5):335–343CrossRefPubMedGoogle Scholar
  5. Arcos-Burgos M, Castellanos FX, Konecki D, Lopera F, Pineda D, Palacio JD et al (2004a) Pedigree disequilibrium test (PDT) replicates association and linkage between DRD4 and ADHD in multigenerational and extended pedigrees from a genetic isolate. Mol Psychiatry 9(3):252–259CrossRefPubMedGoogle Scholar
  6. Arcos-Burgos M, Castellanos FX, Pineda D, Lopera F, Palacio JD, Palacio LG et al (2004b) Attention-deficit/hyperactivity disorder in a population isolate: linkage to loci at 4q13.2, 5q33.3, 11q22, and 17p11. Am J Hum Genet 75(6):998–1014CrossRefPubMedGoogle Scholar
  7. Arcos-Burgos M, Jain M, Acosta MT, Shively S, Stanescu H, Wallis D et al. (2010) A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol Psychiatry (in press)Google Scholar
  8. Banerjee E, Sinha S, Chatterjee A, Gangopadhyay PK, Singh M, Nandagopal K (2006) A family-based study of Indian subjects from Kolkata reveals allelic association of the serotonin transporter intron-2 (STin2) polymorphism and attention-deficit-hyperactivity disorder (ADHD). Am J Med Genet B Neuropsychiatr Genet 141B(4):361–366CrossRefPubMedGoogle Scholar
  9. Biederman J, Faraone SV, Keenan K, Benjamin J, Krifcher B, Moore C et al (1992) Further evidence for family-genetic risk factors in attention deficit hyperactivity disorder. Patterns of comorbidity in probands and relatives psychiatrically and pediatrically referred samples. Arch Gen Psychiatry 49(9):728–738PubMedGoogle Scholar
  10. Brookes K, Xu X, Chen W, Zhou K, Neale B, Lowe N et al (2006) The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 11(10):934–953CrossRefPubMedGoogle Scholar
  11. Cadieu E, Neff MW, Quignon P, Walsh K, Chase K, Parker HG et al (2009) Coat variation in the domestic dog is governed by variants in three genes. Science 326(5949):150–153CrossRefPubMedGoogle Scholar
  12. Carvajal-Carmona LG, Ophoff R, Service S, Hartiala J, Molina J, Leon P et al (2003) Genetic demography of Antioquia (Colombia) and the Central Valley of Costa Rica. Hum Genet 112(5–6):534–541PubMedGoogle Scholar
  13. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P et al (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA 106(45):19096–19101CrossRefPubMedGoogle Scholar
  14. Coghill D, Banaschewski T (2009) The genetics of attention-deficit/hyperactivity disorder. Expert Rev Neurother 9(10):1547–1565CrossRefPubMedGoogle Scholar
  15. Collins FS, Manolio TA (2007) Merging and emerging cohorts: necessary but not sufficient. Nature 445(7125):259CrossRefPubMedGoogle Scholar
  16. Comings DE, Chen C, Wu S, Muhleman D (1999) Association of the androgen receptor gene (AR) with ADHD and conduct disorder. Neuroreport 10(7):1589–1592CrossRefPubMedGoogle Scholar
  17. Durrant C, Morris AP (2005) Linkage disequilibrium mapping via cladistic analysis of phase-unknown genotypes and inferred haplotypes in the Genetic Analysis Workshop 14 simulated data. BMC Genet 6(Suppl 1):S100CrossRefPubMedGoogle Scholar
  18. Durrant C, Zondervan KT, Cardon LR, Hunt S, Deloukas P, Morris AP (2004) Linkage disequilibrium mapping via cladistic analysis of single-nucleotide polymorphism haplotypes. Am J Hum Genet 75(1):35–43CrossRefPubMedGoogle Scholar
  19. Elia J, Capasso M, Zaheer Z, Lantieri F, Ambrosini P, Berrettini W et al (2009) Candidate gene analysis in an on-going genome-wide association study of attention-deficit hyperactivity disorder: suggestive association signals in ADRA1A. Psychiatr Genet 19(3):134–141CrossRefPubMedGoogle Scholar
  20. Elston RC, Yelverton KC (1975) General models for segregation analysis. Am J Hum Genet 27(1):31–45PubMedGoogle Scholar
  21. Faraone SV, Mick E (2010) Molecular genetics of attention deficit hyperactivity disorder. Psychiatr Clin North Am 33(1):159–180CrossRefPubMedGoogle Scholar
  22. Faraone SV, Biederman J, Weiffenbach B, Keith T, Chu MP, Weaver A et al (1999) Dopamine D4 gene 7-repeat allele and attention deficit hyperactivity disorder. Am J Psychiatry 156(5):768–770PubMedGoogle Scholar
  23. Faraone SV, Biederman J, Monuteaux MC (2000) Toward guidelines for pedigree selection in genetic studies of attention deficit hyperactivity disorder. Genet Epidemiol 18(1):1–16CrossRefPubMedGoogle Scholar
  24. Faraone SV, Doyle AE, Mick E, Biederman J (2001) Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder. Am J Psychiatry 158(7):1052–1057CrossRefPubMedGoogle Scholar
  25. Franke B, Neale BM, Faraone SV (2009) Genome-wide association studies in ADHD. Hum Genet 126(1):13–50CrossRefPubMedGoogle Scholar
  26. Friedel S, Saar K, Sauer S, Dempfle A, Walitza S, Renner T et al (2007) Association and linkage of allelic variants of the dopamine transporter gene in ADHD. Mol Psychiatry 12(10):923–933CrossRefPubMedGoogle Scholar
  27. Gizer IR, Ficks C, Waldman ID (2009) Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 126(1):51–90CrossRefPubMedGoogle Scholar
  28. Guo X, Elston RC (2000) Two-stage global search designs for linkage analysis II: including discordant relative pairs in the study. Genet Epidemiol 18(2):111–127CrossRefPubMedGoogle Scholar
  29. Hildebrandt M, Bender R, Gehrmann U, Blettner M (2006) Calculating confidence intervals for impact numbers. BMC Med Res Methodol 6:32CrossRefPubMedGoogle Scholar
  30. Ichtchenko K, Khvotchev M, Kiyatkin N, Simpson L, Sugita S, Sudhof TC (1998) alpha-latrotoxin action probed with recombinant toxin: receptors recruit alpha-latrotoxin but do not transduce an exocytotic signal. EMBO J 17(21):6188–6199CrossRefPubMedGoogle Scholar
  31. Iyengar SK, Song D, Klein BE, Klein R, Schick JH, Humphrey J et al (2004) Dissection of genomewide-scan data in extended families reveals a major locus and oligogenic susceptibility for age-related macular degeneration. Am J Hum Genet 74(1):20–39CrossRefPubMedGoogle Scholar
  32. Jain M, Palacio LG, Castellanos FX, Palacio JD, Pineda D, Restrepo MI et al (2007) Attention-deficit/hyperactivity disorder and comorbid disruptive behavior disorders: evidence of pleiotropy and new susceptibility loci. Biol Psychiatry 61(12):1329–1339CrossRefPubMedGoogle Scholar
  33. Kent L, Doerry U, Hardy E, Parmar R, Gingell K, Hawi Z et al (2002) Evidence that variation at the serotonin transporter gene influences susceptibility to attention deficit hyperactivity disorder (ADHD): analysis and pooled analysis. Mol Psychiatry 7(8):908–912CrossRefPubMedGoogle Scholar
  34. Kent L, Green E, Hawi Z, Kirley A, Dudbridge F, Lowe N et al (2005) Association of the paternally transmitted copy of common Valine allele of the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene with susceptibility to ADHD. Mol Psychiatry 10(10):939–943CrossRefPubMedGoogle Scholar
  35. Kieling C, Goncalves RR, Tannock R, Castellanos FX (2008) Neurobiology of attention deficit hyperactivity disorder. Child Adolesc Psychiatr Clin N Am 17(2):285–307, viiiCrossRefPubMedGoogle Scholar
  36. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921CrossRefPubMedGoogle Scholar
  37. Ledford H (2010) Africa yields two full human genomes. Nature 463(7283):857CrossRefPubMedGoogle Scholar
  38. Lee SS, Lahey BB, Waldman I, Van Hulle CA, Rathouz P, Pelham WE et al (2007) Association of dopamine transporter genotype with disruptive behavior disorders in an eight-year longitudinal study of children and adolescents. Am J Med Genet B Neuropsychiatr Genet 144B(3):310–317CrossRefPubMedGoogle Scholar
  39. Lelianova VG, Davletov BA, Sterling A, Rahman MA, Grishin EV, Totty NF et al (1997) Alpha-latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors. J Biol Chem 272(34):21504–21508CrossRefPubMedGoogle Scholar
  40. Lesch KP, Timmesfeld N, Renner TJ, Halperin R, Roser C, Nguyen TT et al (2008) Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm 115(11):1573–1585CrossRefPubMedGoogle Scholar
  41. Li D, Sham PC, Owen MJ, He L (2006) Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet 15(14):2276–2284CrossRefPubMedGoogle Scholar
  42. Linets’ka MV, Storchak LH, Himmelreich NH (2002) Effect of synaptosomal cytosolic [3H]GABA pool depletion on secretory ability of alpha-latrotoxin. Ukr Biokhim Zh 74(3):65–72PubMedGoogle Scholar
  43. Lopera F, Palacio LG, Jimenez I, Villegas P, Puerta IC, Pineda D et al (1999) Discrimination between genetic factors in attention deficit. Rev Neurol 28(7):660–664PubMedGoogle Scholar
  44. Lowe N, Kirley A, Hawi Z, Sham P, Wickham H, Kratochvil CJ et al (2004) Joint analysis of the DRD5 marker concludes association with attention-deficit/hyperactivity disorder confined to the predominantly inattentive and combined subtypes. Am J Hum Genet 74(2):348–356CrossRefPubMedGoogle Scholar
  45. Maher BS, Marazita ML, Moss HB, Vanyukov MM (1999) Segregation analysis of attention deficit hyperactivity disorder. Am J Med Genet 88(1):71–78CrossRefPubMedGoogle Scholar
  46. Maher BS, Marazita ML, Ferrell RE, Vanyukov MM (2002) Dopamine system genes and attention deficit hyperactivity disorder: a meta-analysis. Psychiatr Genet 12(4):207–215CrossRefPubMedGoogle Scholar
  47. Manolio TA, Collins FS (2009) The HapMap and genome-wide association studies in diagnosis and therapy. Annu Rev Med 60:443–456CrossRefPubMedGoogle Scholar
  48. Manolio TA, Rodriguez LL, Brooks L, Abecasis G, Ballinger D, Daly M et al (2007) New models of collaboration in genome-wide association studies: the Genetic Association Information Network. Nat Genet 39(9):1045–1051CrossRefPubMedGoogle Scholar
  49. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753CrossRefPubMedGoogle Scholar
  50. Manor I, Tyano S, Mel E, Eisenberg J, Bachner-Melman R, Kotler M et al (2002) Family-based and association studies of monoamine oxidase A and attention deficit hyperactivity disorder (ADHD): preferential transmission of the long promoter-region repeat and its association with impaired performance on a continuous performance test (TOVA). Mol Psychiatry 7(6):626–632CrossRefPubMedGoogle Scholar
  51. Marazita ML, Elston RC, Namboodiri KK, Hames CG (1983) Factors contributing to the variability in serum lipid levels and blood pressure in a large kindred. Am J Epidemiol 118(6):806–817PubMedGoogle Scholar
  52. Marazita ML, Spence MA, Melnick M (1984) Genetic analysis of cleft lip with or without cleft palate in Danish kindreds. Am J Med Genet 19(1):9–18CrossRefPubMedGoogle Scholar
  53. Marazita ML, Spence MA, Melnick M (1986) Major gene determination of liability to cleft lip with or without cleft palate: a multiracial view. J Craniofac Genet Dev Biol Suppl 2:89–97PubMedGoogle Scholar
  54. Martin ER, Monks SA, Warren LL, Kaplan NL (2000) A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet 67(1):146–154CrossRefPubMedGoogle Scholar
  55. Matsushita H, Lelianova VG, Ushkaryov YA (1999) The latrophilin family: multiply spliced G protein-coupled receptors with differential tissue distribution. FEBS Lett 443(3):348–352CrossRefPubMedGoogle Scholar
  56. Mee CJ, Tomlinson SR, Perestenko PV, De Pomerai D, Duce IR, Usherwood PN et al (2004) Latrophilin is required for toxicity of black widow spider venom in Caenorhabditis elegans. Biochem J 378(Pt 1):185–191CrossRefPubMedGoogle Scholar
  57. Neuman RJ, Heath A, Reich W, Bucholz KK, Madden PAF, Sun L et al (2001) Latent class analysis of ADHD and comorbid symptoms in a population sample of adolescent female twins. J Child Psychol Psychiatry 42(7):933–942CrossRefPubMedGoogle Scholar
  58. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461(7261):272–276CrossRefPubMedGoogle Scholar
  59. Palacio JD, Castellanos FX, Pineda DA, Lopera F, Arcos-Burgos M, Quiroz YT et al (2004) Attention-deficit/hyperactivity disorder and comorbidities in 18 Paisa Colombian multigenerational families. J Am Acad Child Adolesc Psychiatry 43(12):1506–1515CrossRefPubMedGoogle Scholar
  60. Pineda DA, Palacio LG, Puerta IC, Merchan V, Arango CP, Galvis AY et al (2007) Environmental influences that affect attention deficit/hyperactivity disorder: study of a genetic isolate. Eur Child Adolesc Psychiatry 16(5):337–346CrossRefPubMedGoogle Scholar
  61. Rasmussen ER, Neuman RJ, Heath AC, Levy F, Hay DA, Todd RD (2002) Replication of the latent class structure of attention-deficit/hyperactivity disorder (ADHD) subtypes in a sample of Australian twins. J Child Psychol Psychiatry 43(8):1018–1028CrossRefPubMedGoogle Scholar
  62. Reiersen AM, Constantino JN, Grimmer M, Martin NG, Todd RD (2008) Evidence for shared genetic influences on self-reported ADHD and autistic symptoms in young adult Australian twins. Twin Res Hum Genet 11(6):579–585CrossRefPubMedGoogle Scholar
  63. Ribases M, Ramos-Quiroga JA, Hervas A, Bosch R, Bielsa A, Gastaminza X et al (2009) Exploration of 19 serotoninergic candidate genes in adults and children with attention-deficit/hyperactivity disorder identifies association for 5HT2A, DDC and MAOB. Mol Psychiatry 14(1):71–85CrossRefPubMedGoogle Scholar
  64. Risch N (1990a) Linkage strategies for genetically complex traits. III. The effect of marker polymorphism on analysis of affected relative pairs. Am J Hum Genet 46(2):242–253PubMedGoogle Scholar
  65. Risch N (1990b) Linkage strategies for genetically complex traits. II. The power of affected relative pairs. Am J Hum Genet 46(2):229–241PubMedGoogle Scholar
  66. Risch N (1990c) Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 46(2):222–228PubMedGoogle Scholar
  67. Risch N (1990) Genetic linkage and complex diseases, with special reference to psychiatric disorders. Genet Epidemiol 7(1):3–16 (discussion 7–45)Google Scholar
  68. Risch N, Merikangas KR (1993) Linkage studies of psychiatric disorders. Eur Arch Psychiatry Clin Neurosci 243(3–4):143–149CrossRefPubMedGoogle Scholar
  69. Risch N, Teng J (1998) The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases I. DNA pooling. Genome Res 8(12):1273–1288PubMedGoogle Scholar
  70. Risch N, Zhang H (1995) Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science 268(5217):1584–1589CrossRefPubMedGoogle Scholar
  71. Schliekelman P, Slatkin M (2002) Multiplex relative risk and estimation of the number of loci underlying an inherited disease. Am J Hum Genet 71(6):1369–1385CrossRefPubMedGoogle Scholar
  72. Service S, DeYoung J, Karayiorgou M, Roos JL, Pretorious H, Bedoya G et al (2006) Magnitude and distribution of linkage disequilibrium in population isolates and implications for genome-wide association studies. Nat Genet 38(5):556–560CrossRefPubMedGoogle Scholar
  73. Sheehan K, Lowe N, Kirley A, Mullins C, Fitzgerald M, Gill M et al (2005) Tryptophan hydroxylase 2 (TPH2) gene variants associated with ADHD. Mol Psychiatry 10(10):944–949CrossRefPubMedGoogle Scholar
  74. Slatkin M (2008) Genotype-specific recurrence risks as indicators of the genetic architecture of complex diseases. Am J Hum Genet 83(1):120–126CrossRefPubMedGoogle Scholar
  75. Slatkin M (2009) Epigenetic inheritance and the missing heritability problem. Genetics 182(3):845–850CrossRefPubMedGoogle Scholar
  76. Smith AK, Mick E, Faraone SV (2009) Advances in genetic studies of attention-deficit/hyperactivity disorder. Curr Psychiatry Rep 11(2):143–148CrossRefPubMedGoogle Scholar
  77. Spencer TJ, Biederman J, Mick E (2007) Attention-deficit/hyperactivity disorder: diagnosis, lifespan, comorbidities, and neurobiology. J Pediatr Psychol 32(6):631–642CrossRefPubMedGoogle Scholar
  78. Stricker C, Fernando RL, Elston RC (1995) Linkage analysis with an alternative formulation for the mixed model of inheritance: the finite polygenic mixed model. Genetics 141(4):1651–1656PubMedGoogle Scholar
  79. Sugita S, Ichtchenko K, Khvotchev M, Sudhof TC (1998) alpha-Latrotoxin receptor CIRL/latrophilin 1 (CL1) defines an unusual family of ubiquitous G-protein-linked receptors G-protein coupling not required for triggering exocytosis. J Biol Chem 273(49):32715–32724CrossRefPubMedGoogle Scholar
  80. Thapar A, O’Donovan M, Owen MJ (2005) The genetics of attention deficit hyperactivity disorder. Hum Mol Genet 14 Spec No. 2:R275–R282Google Scholar
  81. van den Oord EJ, Boomsma DI, Verhulst FC (1994) A study of problem behaviors in 10- to 15-year-old biologically related and unrelated international adoptees. Behav Genet 24(3):193–205CrossRefPubMedGoogle Scholar
  82. Waldman ID, Gizer IR (2006) The genetics of attention deficit hyperactivity disorder. Clin Psychol Rev 26(4):396–432CrossRefPubMedGoogle Scholar
  83. Willcutt EG, Pennington BF, Chhabildas NA, Friedman MC, Alexander J (1999) Psychiatric comorbidity associated with DSM-IV ADHD in a nonreferred sample of twins. J Am Acad Child Adolesc Psychiatry 38(11):1355–1362CrossRefPubMedGoogle Scholar
  84. Wong ML, Arcos-Burgos M, Licinio J (2008) Frontiers in psychiatric research. Psychiatr Times 25(7):1–8Google Scholar

Copyright information

© Springer-Verlag (outside the USA) 2010

Authors and Affiliations

  1. 1.National Human Genome Research InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations