Advertisement

Zeitschrift für Energiewirtschaft

, Volume 38, Issue 4, pp 235–253 | Cite as

A Note on the Inefficiency of Technology- and Region-Specific Renewable Energy Support: The German Case

  • Cosima Jägemann
Article

Abstract

Renewable energy (RES-E) support schemes have to meet two requirements in order to lead to a cost-efficient renewable energy mix. First, RES-E support schemes need to expose RES-E producers to the price signal of the wholesale market, which incentivizes investors to account not only for the marginal costs per kWh (\(\overline{MC}\)) but also for the marginal value per kWh (\(\overline{MV^{el}}\)) of renewable energy technologies. Second, RES-E support schemes need to be technology- and region-neutral in their design (rather than technology- and region-specific). That is, the financial support may not be bound to a specific technology or a specific region. In Germany, however, wind and solar power generation is currently incentivized via technology- and region-specific feed-in tariffs (FIT), which are coupled with capacity support limits. As such, the current RES-E support scheme in Germany fails to expose wind and solar power producers to the price signal of the wholesale market. Moreover, it is technology- and region-specific in its design, i.e., the support level for each kWh differs between wind and solar power technologies and the location of their deployment (at least for onshore wind power). As a consequence, excess costs occur which are burdened by society. This paper illustrates the economic consequences associated with Germany’s technology- and region-specific renewable energy support by applying a linear electricity system optimization model. Overall, excess costs are found to amount to more than 6.6 Bn Euro \(_{2010}\). These are driven by comparatively high net marginal costs of offshore wind and solar power in comparison to onshore wind power in Germany up to 2020.

Keywords

Technology- and region-specific renewable energy support Marginal costs Marginal value 

Analyse der Ineffizienz technologie- und regionenspezifischer Fördermechanismen für erneuerbare Energien am Beispiel Deutschland

Zusammenfassung

Fördermechanismen für erneuerbare Energien (EE) müssen zwei Bedingungen erfüllen, um das Kriterium der Kosteneffizienz zu erfüllen: Zum einen sollten Investoren unter dem Fördermechanismus das Marktpreissignal und damit den Grenzwert der Erneuerbaren Energien pro kWh in ihrem Investitionskalkül berücksichtigen. Zum anderen sollte der EE-Fördermechanismus technologie- und regionenneutral in seiner Ausgestaltung sein. In Deutschland wird die Stromerzeugung aus Wind- und Solarkraft derzeit jedoch über einen technologie- und regionenspezifischen Einspeisetarif gefördert (in Verbindung mit Obergrenzen für die insgesamt geförderte Kapazität). Hierbei spielt das Marktpreissignal aus Sicht der Investoren keine Rolle. Zudem ist der Einspeisetarif technologie- und regionenspezifisch in seinem Design, d. h., die Höhe der Förderung pro kWh unterscheidet sich nach der Technologie (Onshore Wind, Offshore Wind und Photovoltaik) und dem Aufstellungsort (zumindest für Onshore Wind). Infolgedessen fallen Zusatzkosten an, die von der Gesellschaft getragen werden müssen. Dieser Artikel analysiert die ökonomischen Konsequenzen der technologie- und regionenspezifischen EE-Förderung in Deutschland. Es wird gezeigt, dass sich die Zusatzkosten auf mehr als 6.6 Mrd. Euro\(_{2010}\) belaufen. Diese sind zurückzuführen auf vergleichsweise hohen Netto-Grenzkosten der Offshore Wind- und Solarenergie im Vergleich zur Onshore Windenergie in Deutschland bis 2020.

JEL classification

C61 Q28 Q42 

References

  1. Agora Energiewende (2013) Studie zum kostenoptimalen Ausbau der Erneuerbaren Energien. Hintergrunddokument zu Kostenannahmen der Erneuerbaren. Tech. repGoogle Scholar
  2. BMU (2014) Eckpunkte für die Reform des EEG. Tech. rep., Federal Ministry for the Environment, Nature Conservation, Building and Nuclear SafetyGoogle Scholar
  3. CDU/CSU/SPD (2013) Deutschlands Zukunft gestalten. Koalitionsvertrag zwischen CDU, CSU und SPD. 18. Legislaturperiode. Tech. rep. https://www.cdu.de/sites/default/files/media/dokumente/koalitionsvertrag.pdfGoogle Scholar
  4. Deutsche Bank (2012) The German feed-in tariff: Recent policy changes. Tech. rep., Deutsche Bank. https://www.db.com/cr/en/docs/German_FIT_Update_2012.pdfGoogle Scholar
  5. ENSTO-E, 2013. Hourly load values for all countries for a specific month. https://www.entsoe.eu/data/data-portal/consumption/Google Scholar
  6. ENTSO-E (2012). 10-Year Network Development PlanGoogle Scholar
  7. ENTSO-E (February 2014) Monthly consumption of all countries for a specific year (2012). https://www.entsoe.eu/db-query/consumption/monthly-consumption-of-all-countries-for-a-specific-year/Google Scholar
  8. EU Council (October 2009) Brussels European Council 29/30 OCTOBER 2009 - Presidency Conclusions. Council of the European UnionGoogle Scholar
  9. EuroWind (2011) Database for hourly wind speeds and solar radiation from 2006–2010 (not public)Google Scholar
  10. EWI (2010) European RES-E policy analysis - a model based analysis of RES-E deployment and its impact on the conventional power markt. M. Fürsch and C. Golling and M. Nicolosi and R. Wissen and D. Lindenberger (Institute of Energy Economics at the University of Cologne)Google Scholar
  11. EWI (2011) Roadmap 2050 - a closer look. Cost-efficient RES-E penetration and the role of grid extensions. M. Fürsch, S. Hagspiel, C. Jägemann, S. Nagl and D. Lindenberger. Institute of Energy Economics at the University of CologneGoogle Scholar
  12. Frontier Economics (2012) Die Zukunft des EEG - Handlungsoptionen und Reformansätze. Bericht für die ENBW Energie Baden-Würtemberg AG. Tech. rep., Frontier EconomicsGoogle Scholar
  13. Fürsch M, Hagspiel S, Jägemann C, Nagl S, Lindenberger D, Tröster E (2013) The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050. Appl Energy 104:642–652Google Scholar
  14. IEA (2010a) Technology roadmap - concentrating solar power. International Energy Agency. www.iea.org/papers/2010/
  15. IEA (2010b) World Energy Outlook 2010. International Energy AgencyGoogle Scholar
  16. IEA (2011) World Energy Outlook 2011. International Energy AgencyGoogle Scholar
  17. ISE (2013) Stromgestehungskosten für Erneuerbare Energien. Tech. rep., Fraunhofer-Institut für solare EnergiesystemeGoogle Scholar
  18. ISE (2014) Stromerzeugung aus Solar- und Windenergie im Jahr 2013. Tech. rep., Fraunhofer-Institut für solare Energiesysteme ISEGoogle Scholar
  19. Jägemann C (2014) An illustrative note on the system price effect of wind and solar power - The German case. Institute of Energy Economics at the University of Cologne Working Paper No 14/10Google Scholar
  20. Jägemann C, Fürsch M, Hagspiel S, Nagl S (2013a) Decarbonizing Europe’s power sector by 2050 - analyzing the economic implications of alternative decarbonization pathways. Energy Econ 40:622–636Google Scholar
  21. Jägemann C, Hagspiel S, Lindenberger D (2013b) The economic inefficiency of grid parity: the case of German photovoltaic. Institute of Energy Economics at the University of Cologne Working Paper No 13/19Google Scholar
  22. Joskow PL (2011) Comparing the costs of intermittent and dispatchable electricity generating technologies. Amer Econ Rev 100(3):238–241Google Scholar
  23. Klessmann C, Nabe C, Burges K (2008) Pros and cons of exposing renewables to electricity market risks - a comparison of the market integration approaches in Germany, Spain, and the UK. Energy Policy 36:3646–3661Google Scholar
  24. Lamont AD (2008) Assessing the long-term system value of intermittent electric generation technologies. Energy Econ 30:1208–1231Google Scholar
  25. Mitchell C, Bauknecht D, Connor PM (2006) Effectiveness through risk reduction: a comparison of the renewable obligation in England and Wales and the feed-in system in Germany. Energy Policy 34:297–305Google Scholar
  26. Nagl S, Fürsch M, Jägemann C, Bettzüge M (2011) The economic value of storage in renewable power systems - the case of thermal energy storage in concentrating solar plants. Institute of Energy Economics at the University of Cologne Working Paper No 11/08Google Scholar
  27. Nagl S, Fürsch M, Lindenberger D (2013) The costs of electricity systems with a high share of fluctuating renewables - a stochastic investment and dispatch optimization model for Europe. The Energy Journal 34:151–179Google Scholar
  28. PROGNOS/EWI/GWS (2010) Energieszenarien für ein Energiekonzept der Bundesregierung. Schlesinger and P.Hofer and A. Kemmler and A. Kirchner and S. Strassburg (all Prognos AG); D. Lindenberger and M. Fürsch and S. Nagl and M. Paulus and J. Richter and J. Trüby (all Institute of Energy Economics at the University of Cologne); C. Lutz and O. Khorushun and U. Lehr and I. Thobe (all GWS mbH)Google Scholar
  29. Richter J (2011) DIMENSION - A Dispatch and Investment Model for European Electricity Markets (Working Paper No. 11/03) Institute of Energy Economics at the University of Cologne. http://www.ewi.uni-koeln.de/publikationen/working-paper/
  30. Statista (January 2014). Anteil erneuerbarer Energien an der Bruttostromerzeugung in Deutschland in den Jahren 1990 bis 2013. http://de.statista.com/statistik/daten/studie/1807/umfrage/erneuerbare-energien-anteil-der-energiebereitstellung-seit-1991/
  31. The Crown Estate (June 2012) Offshore wind cost reduction pathways studyGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  1. 1.Formerly Institute of Energy EconomicsUniversity of CologneCologneGermany

Personalised recommendations