Advertisement

Zeitschrift für Energiewirtschaft

, Volume 38, Issue 1, pp 47–64 | Cite as

Promotion of Electricity from Renewable Energy in Europe Post 2020—The Economic Benefits of Cooperation

  • Michaela UnteutschEmail author
  • Dietmar Lindenberger
Article

Abstract

The availability of renewable energies differs significantly across European regions. Consequently, European cooperation in the deployment of renewable energy potentially yields substantial efficiency gains. However, for achieving the 2020 renewable energy targets, most countries purely rely on domestic production. In this paper, we analyze the benefits of cooperation compared to continuing with national renewable energy support after 2020. We use an optimization model of the European electricity system and find that compared to a 2030 CO2-only target (−40 % compared to 1990), electricity system costs increase by 5 to 7 % when a European-wide renewable energy target for electricity generation (of 55 %) is additionally implemented. However, these additional costs are 41 to 45 % lower than the additional costs which would arise if the renewable energy target was reached through national support schemes (without cooperation). Furthermore, the cost reduction achieved by cooperation is quite robust with regard to assumptions about interconnector extensions and investment cost developments of renewable energy technologies. In practice, however, administrative issues and questions concerning the fair sharing of costs and benefits between the Member States represent major obstacles that need to be tackled in order to reach renewable energy targets at the lowest costs possible.

Keywords

Renewable energy Cooperation mechanisms Power system optimization 

Zubau erneuerbarer Energien in Europa nach 2020 – eine Analyse der Vorteile von Staaten übergreifender Kooperation

Zusammenfassung

Aufgrund unterschiedlicher meteorologischer Bedingungen innerhalb Europas variieren die regionalen Stromgestehungskosten erneuerbarer Energien deutlich. Folglich können durch grenzüberschreitende Kooperationen beim Zubau erneuerbarer Energien erhebliche Effizienzgewinne realisiert werden. Nichtsdestotrotz streben die meisten europäischen Mitgliedsstaaten bislang keine Kooperationen an und wollen das 2020er Ausbauziel für erneuerbare Energien primär durch den Zubau innerhalb der eigenen nationalen Grenzen erreichen. In diesem Artikel zeigen wir die Vorteile europäischer Kooperation gegenüber dem Fall auf, dass auch nach 2020 nationale Ansätze weiterverfolgt werden. Mit Hilfe eines Optimierungsmodells des europäischen Strommarktes zeigen wir, dass die Stromsystemkosten um 5–7 % ansteigen würden, wenn neben einem reinen CO2-Ziel für 2030 (−40 % gegenüber 1990) zusätzlich ein europäisches Ziel für den Ausbau erneuerbarer Energien (i.H.v. 55 %) erreicht werden muss. Diese Zusatzkosten sind jedoch 41–45 % niedriger als die Zusatzkosten, die entstehen würden, wenn das Ausbauziel für die erneuerbaren Energien durch nationale Ansätze verfolgt würde. Außerdem zeigen wir, dass diese Kooperationsgewinne relativ robust gegenüber verschiedenen Annahmen bezüglich dem Ausbau von Grenzkuppelstellen sowie den Investitionskosten erneuerbarer Energien sind. Damit auch in der Praxis zunehmend von der Möglichkeit Gebrauch gemacht wird, Kooperationsgewinne zu erzielen, müssen jedoch administrative Hemmnisse beseitigt sowie Fragen bezüglich einer fairen Kosten-Nutzen-Aufteilung zwischen den Mitgliedsstaaten geklärt werden.

Schlüsselwörter

Erneuerbare Energien Kooperationsmechanismen Stromsystem-Optimierung 

References

  1. Aune F, Dalen H, Hagem C (2012) Implementing the EU renewable target through green certificate markets. Energy Econ 34:992–1000 CrossRefGoogle Scholar
  2. Bartels M (2009) Cost efficient expansion of district heat networks in Germany. PhD thesis, Energiewirtschaftliches Institut an der Universität zu Köln Google Scholar
  3. Beurskens L, Hekkenberg M, Vethman P (2011) Renewable energy projections as published in the National Renewable Energy Action Plans of the European Member States. Tech rep, ECN Google Scholar
  4. Booze & Company, Newberry, D, Strbac, G, Pudjianto, D, Noel, P, and LeighFisher (2013) Benefits of an integrated European energy market. Prepared for Directorate-General Energy, European Commission. Tech rep Google Scholar
  5. BSW (2011) Preisindex Photovoltaik. http://www.solarwirtschaft.de/preisindex
  6. Buijs P (2011) Transmission investments: concepts for European collaboration in planning and financing. PhD thesis, Katholieke Universiteit Leuven Google Scholar
  7. Capros P, Mantzos L, Tasios N, DeVita A, Kouvaritakis N (2010) Energy trends to 2030—update 2009. Tech rep, Institute of Communication and Computer Systems of the National Technical University of Athens Google Scholar
  8. Capros P, Mantzos L, Parousos L, Tasios N, Klaassen G, Ierland TV (2011) Analysis of the EU policy package on climate change and renewables. Energy Policy 39:1476–1485 CrossRefGoogle Scholar
  9. Del Río P (2005) A European-wide harmonized tradable green certificate scheme for renewable electricity: is it really so beneficial? Energy Policy 33:1239–1250 CrossRefGoogle Scholar
  10. Dena (2010) Integration of renewable energy sources into the German power supply system in the 2015–2020 period with outlook to 2025 (Dena grid study II). Tech rep, German Energy Agency (Dena) Google Scholar
  11. EC (2010) National renewable energy action plans. http://ec.europa.eu/energy/renewables/action_plan_en.htm
  12. EC (2011a) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: a roadmap for moving to a competitive low carbon economy in 2050. Tech rep, COM(2011) 112 final. European Commission Google Scholar
  13. EC (2011b) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Energy roadmap 2050—impact assessment and scenario analysis. Tech rep, European Commission Google Scholar
  14. EC (2012) Commission working document accompanying the document “Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Renewable energy: a major player in the European energy market”. Tech rep, European Commission Google Scholar
  15. EC (2013) Commission staff working document “Guidance on the use of renewable energy cooperation mechanisms”, accompanying the document “Delivering the internal electricity market and making the most of public intervention” (SWD (2013) 440 final). Tech rep, European Commission Google Scholar
  16. ENTSO-E (2010) Ten year network development plan 2010. Tech rep, European Network of Transmission System Operators for Electricity (ENTSO-E) Google Scholar
  17. EURELECTRIC (2008) Statistics and prospects for the European electricity sector; 36th edition. Tech rep, Eurelectric Google Scholar
  18. EuroWind (2011) Database for hourly wind speeds and solar radiation from 2006–2010 (not public). Tech. rep., EuroWind Google Scholar
  19. EWI (2010) European RES-E policy analysis—a model based analysis of RES-E deployment and its impact on the conventional power market. Tech rep, Institute of Energy Economics at the University of Cologne Google Scholar
  20. EWI and energynautics (2011) Roadmap 2050—a closer look. Cost-efficient RES-E penetration and the role of grid extensions. Tech rep, Institute of Energy Economics at the University of Cologne and energynautics Google Scholar
  21. Fürsch M, Lindenberger D, Malischek R, Nagl S, Panke T, Trüby J (2012) German nuclear policy reconsidered: implications for the electricity market. Econ Energy Environ Policy 1:39–58 CrossRefGoogle Scholar
  22. Fürsch M, Hagspiel S, Jägemann C, Nagl S, Lindenberger D, Tröster E (2013) The role of grid extensions in a cost—efficient transformation of the European electricity system until 2050. Appl Energy 104:642–652 CrossRefGoogle Scholar
  23. Grave K, Paulus M, Lindenberger D (2012) A method for estimating security of electricity supply from intermittent sources: scenarios for Germany until 2030. Energy Policy 46:193202 CrossRefGoogle Scholar
  24. Hinkley J, Curtin B, Hayward J, Wonhas A, Boyd R, Grima C, Tadros A, Hall R, Naicker K, Mikhail A (2011) Concentrating solar power—drivers and opportunities for cost-competitive electricity. Tech rep, CSIRO Google Scholar
  25. IEA (2011) World energy outlook 2011. Tech rep, International Energy Agency Google Scholar
  26. IRENA (2012) Renewable energy technologies: cost analysis series. Concentrating solar power. Working Paper Google Scholar
  27. Jansen J (2011) Do we need a common support scheme for renewables-sourced electricity in Europe? And if so, how could it be designed? ECN Working Paper Google Scholar
  28. Jägemann C, Fürsch M, Hagspiel S, Nagl S (2013) Decarbonizing Europe’s power sector by 2050—analyzing the implications of alternative decarbonization pathways. Energy J 40:622–636 Google Scholar
  29. Klessmann C, Lamers P, Ragwitz M, Resch G (2010) Design options for cooperation mechanisms under the new European renewable energy directive. Energy Policy 38:4679–4691 CrossRefGoogle Scholar
  30. Laffont M, Sand-Zantman W (2012) Promoting renewable energy in a common market. Working Paper, Toulouse School of Economics Google Scholar
  31. Lauber V (2004) REFIT and RPS: options for a harmonised community framework. Energy Policy 32:1405–1414 CrossRefGoogle Scholar
  32. Munoz M, Oschmann V, Tàbara J (2007) Harmonization of renewable electricity feed-in laws in the European Union. Energy Policy 35:3104–3114 CrossRefGoogle Scholar
  33. Nagl S, Fürsch M, Paulus M, Richter J, Trüby J, Lindenberger D (2011) Energy policy scenarios to reach challenging climate protection targets in the German electricity sector until 2050. Util Policy 19(3):185–192 CrossRefGoogle Scholar
  34. Pade L-L, Jacobsen H, Nielsen LS (2012) Cost-efficient and sustainable deployment of renewable energy sources towards the 20 % target by 2020, and beyond. Assessment of cooperation mechanism options. Tech rep, RES4less Project Google Scholar
  35. Paulus M, Borggrefe F (2011) The potential of demand-side management in energy-intensive industries for electricity markets in Germany. Appl Energy 88(2):432–441 CrossRefGoogle Scholar
  36. Ragwitz M, Held A, Resch G, Faber T, Haas R, Huber C, Coenraads R, Voogt M, Reece G, Morthorst P, Jensen S, Konstantinaviciute L, Heyder B (2007) Assessment and optimization of renewable energy support schemes in the European electricity market (OPTRES). Tech rep, Project supported by the European Commission Google Scholar
  37. Richter J (2011) DIMENSION—a dispatch and investment model for European electricity markets. Working Paper, Institute of Energy Economics at the University of Cologne Google Scholar
  38. Saguan M, Meeus L (2012) Modeling the cost of achieving a renewable energy target: does it pay to cooperate across borders? EUI Working Papers Google Scholar
  39. Söderholm P (2008) Harmonization of renewable electricity feed-in laws: a comment. Energy Policy 36:946–953 CrossRefGoogle Scholar
  40. Turchi C, Mehos M, Ho C, Kolb GJ (2010) Current and future costs for parabolic trough and power tower systems in the US market. Conference Paper, presented at SolarPACES conference 2010 in Perpignan Google Scholar
  41. Voogt M, Uyterlinde M, de Noord K, Skytte L, Nielsen M, Leonardi M, Whiteley M, Chapman M (2001) Renewable energy burden sharing—REBUS—effects of burden sharing and certificate trade on the renewable electricity market in Europe. Tech rep, ECN-C-01-030 Google Scholar
  42. Wissen R (2011) Die Ökonomik unterschiedlicher Ausbaudynamiken Erneuerbarer Energien im europäischen Kontext – eine modellbasierte Analyse. PhD thesis, University of Cologne Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  1. 1.Institute of Energy EconomicsUniversity of CologneCologneGermany

Personalised recommendations