Skip to main content
Log in

Food Engineering in Ibero-America: the Contribution of the CYTED Program (1986–2005)

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Between 1986 and 2005, the CYTED Sub-program on Food Preservation (CYTED-SFP) involved the collaboration of 11 Ibero-American countries, more than 60 multidisciplinary research groups and over 300 researchers. During this period, CYTED-SFP allowed the establishment of a thriving food engineering community through several international research projects and thematic cooperation networks. Scientifically, CYTED-SFP made important contributions in the areas of water management of foods and its practical applications as intermediate moisture foods, the preservation of foods by combined methods technologies, and minimally processed fruits and vegetables. CYTED-SFP played an important role in establishing food engineering as an academic sub-discipline in Latin America by the formation of advanced human capital (i.e., PhDs), training of technical personnel and students, initiation of academic programs in food engineering, and the generation of research articles, topical books, and educational material. Another legacy of the CYTED-SFP are the Congreso Iberoamericano de Ingeniería de Alimentos (CIBIA) congresses established in 1994, the last one (CIBIA-XI) celebrated recently in Valparaíso, Chile. CYTED-SFP is a unique example of international cooperation in the areas of food engineering and food technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Welti-Chanes J, Barbosa-Cánovas GV, Aguilera J (2000) Engineering and food for the 21st century. CRC Press Boca, Raton, FL

    Google Scholar 

  2. Weisstaub G, Aguilar AM, Uauy R (2014) Treatment and prevention of malnutrition in Latin America: focus on Chile and Bolivia. Food Nutr Bull 35(2 Suppl):39–46

    Article  Google Scholar 

  3. Heldman DR, Lund DB (2011) In: Aguilera JM, Barbosa-Cánovas GV, Simpson R, Welti-Chanes J, Bermudez-Aguirre D (eds) Food engineering interfaces. New York, Springer

    Google Scholar 

  4. Elizalde A (2014) La ingeniería bioquímica en México: un marco de referencia. Ed Chemlife, Mexico

  5. Ibarz, A. (2017) Personal communication

    Google Scholar 

  6. López-Gómez A (2018) Personal communication

  7. Anonymous (1995) Northern network fish processing. Copenhagen; northern council of ministers

  8. Cuevas, R. (2008) Ingeniería de alimentos, calidad y competitividad en sistemas de la pequeña industria alimentaria con énfasis en América Latina y el Caribe. Boletín de Servicios Agrícolas 156. Food and Agriculture Organization, Rome

  9. UNDP/FAO (1969) Post graduate agricultural engineering education and research in Latin America. Universidad Agraria La Molina, Lima

    Google Scholar 

  10. Lemus-Mondaca R, Vega-Gálvez A, Zura-Bravo L, Ah-Hen K (2012) Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chem 132:1121–1132

    Article  CAS  Google Scholar 

  11. Vega-Galvez A, Miranda M, Vergara J, Uribe E, Puente L, Martínez EA (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. J Sci Food Agric 90:2541–2547

    Article  CAS  Google Scholar 

  12. Muñoz LA, Cobos A, Diaz O, Aguilera JM (2013) Chia seed (Salvia hispanica) an ancient grain and new functional product. Food Rev Int 29:394–408

    Article  Google Scholar 

  13. Ramos-Elorduy J, Viejo Montesinos JL (2007) Los insectos como alimento humano: Breve ensayo sobre la entomofagia, con especial referencia a México. Boletín de la Real Sociedad Española de Historia Natural Sección Biologica 102(1–4):61–84

    Google Scholar 

  14. Van-Huis IJV, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P (2013) Edible insects: future prospects for food and feed security. Food and Agriculture Organization of the United Nations, Rome, p 201

    Google Scholar 

  15. Tannhill R (1988) Food in history. Crown Publishers Inc., New York

    Google Scholar 

  16. Peñarrieta JM, Alvarado JA, Bravo JA, Bergenståhl B (2012) In: Caprara C (ed) Potatoes: production, consumption and health benefits. Nova Science Publishers Inc., New York

    Google Scholar 

  17. Sauer CO (1969) Agricultural origins and dispersal. MIT Press, Cambridge MA

    Google Scholar 

  18. Del Valle FR, Pérez-Villaseñor J (1974) Enrichment of tortillas with soy proteins by lime cooking of whole raw corn-soybean mixtures. J Food Sci 39:244–247

    Article  Google Scholar 

  19. Rotstein E, Cornish ARH (1978) Prediction of the sorptional equilibrium relationship for the drying of foodstuffs. AICHE J 24:956–966

    Article  CAS  Google Scholar 

  20. Crapiste GH, Whitaker S, Rotstein E (1985) Fundamentals of drying of foodstuffs. In: Toei R, Mujumdar AS (eds) Drying ‘85. Springer, Berlin

    Google Scholar 

  21. Quast D, Karel M (1972) Computer simulation of storage life of foods undergoing spoilage by two interacting mechanisms. J Food Sci 37:679–683

    Article  Google Scholar 

  22. Aguilera JM, Chirife J, Flink JM, Karel M (1974) Computer simulation of non-enzymatic browning during potato dehydration. Lebensm Wiss Technol 8:128–133

    Google Scholar 

  23. Paredes-López O, Covarrubias-Álvarez MM (1984) Influence of gamma radiation on the rheological and functional properties of bread wheats. Int J Food Sci Technol 19(2):225–231

    Article  Google Scholar 

  24. Vitali AA, Rao MA (1982) Flow behavior of guava puree as a function of temperature and concentration. J Texture Stud 13:275–289

    Article  Google Scholar 

  25. Bevilacqua AE, Zaritsky NE, Calvelo A (1979) Histological measurements of ice in frozen beef. J Food Technol 14:237–251

    Article  Google Scholar 

  26. Mascheroni RH, Calvelo A (1980) Relationship between heat transfer parameters and the characteristic damage variables for the freezing of meat. Meat Sci 4:265–285

    Article  Google Scholar 

  27. Barrera M, Zaritzky N (1983) Thermal conductivity of beef liver. J Food Sci 48:1779–1782

    Article  Google Scholar 

  28. Fito P, Clemente G, Sanz FJ (1983) Rheological behavior of tomato concentrates (hot break and cold break). J Food Eng 2:51–62

    Article  Google Scholar 

  29. Sereno AM, Medeiros GL (1990) A simplified model for the prediction of drying rates for foods. J Food Eng 12:1–11

    Article  Google Scholar 

  30. Solleiro JE, Gutiérrez-López GF (2008) In: Gutiérrez-López GF, Barbosa-Cánovas GV, Welti-Chanes J, Parada-Arias E (eds) Food engineering: integrated approaches. New York, Springer

    Google Scholar 

  31. Jayaraman KS (1995) In: Welti-Chanes J, Barbosa-Canóvas GV (eds) Food preservation by moisture control—fundamentals and applications. Technomic Pub Co, Lancaster, PA

    Google Scholar 

  32. Scott WJ (1957) Water relations of food spoilage microorganisms. Adv Food Res 7:83–127

    Article  CAS  Google Scholar 

  33. Van der Berg C, Bruin S (1981) In: Rockland LB, Stewart G (eds) Water activity: influences on food quality. Academic Press, New York

    Google Scholar 

  34. Labuza TP, Tannenbaum SR, Karel M (1970) Water content and stability of low-moisture and intermediate moisture foods. J Food Technol 24:35–42

    CAS  Google Scholar 

  35. Chirife J, Iglesias HA (1978) Equations for fitting water sorption isotherms of foods. Part 1, review. J Food Technol 13:159–174

    Article  Google Scholar 

  36. Hough G, Bratchell N, MacDougall DB (1992) Sensory profiling of dulce de leche, a dairy based confectionary product. J Sens Stud 7:157–178

    Article  Google Scholar 

  37. Torres EAFS, Shimokomaki M, Franco BDGM, Landgraf M, CarvalhoJr BC, Santos JC (1994) Parameters determining the quality of charqui, an intermediate moisture meat product. Meat Sci 38:229–234

    Article  CAS  Google Scholar 

  38. Tapia MS, Aguilera JM, Chirife J, Parada E, Welti J (1994) Identification of microbial stability factors in traditional foods from Iberoamerica. Revista Española de Ciencia y Tecnología de Alimentos 34:145–163

    Google Scholar 

  39. Aguilera JM, Parada E (1992) CYTED-D AHI: an Ibero-American project on intermediate moisture foods and combined methods technology. Food Res Int 25:159–165

    Article  Google Scholar 

  40. Welti J, Tapia MS, Aguilera JM, Chirife J, Parada E, López-Malo A, López LC, Corte P (1994) Classification of intermediate moisture foods consumed in Ibero-America. Revista Española de Ciencia y Tecnología de Alimentos 34:53–63

    Google Scholar 

  41. Aguilera JM, Chirife J, Tapia MS, Welti J (eds) (1990) Inventario de Alimentos de Humedad Intermedia Tradicionales de Iberoamérica. Instituto Politécnico Nacional, Ciudad de México

    Google Scholar 

  42. Iglesias HA, Chirife J (1982) Handbook of food isotherms: water sorption parameters for food and food components. Academic Press, New York

    Google Scholar 

  43. Favetto G, Chirife J (1985) Simplified method for the prediction of water activity in binary solutions. J Food Technol 20:631–636

    Article  CAS  Google Scholar 

  44. Iglesias HA, Chirife J, Fontán CF (1986) temperature dependence of water sorption isotherms of some foods. J Food Sci 51:551–553

    Article  Google Scholar 

  45. Kitic D, Jardim DCP, Favetto GJ, Resnik SL, Chirife J (1986) Theoretical prediction of the water activity of standard saturated salt solutions at various temperatures. J Food Sci 51(4):1037–1041

    Article  CAS  Google Scholar 

  46. Chen JS (1989) Predicting water activity in solutions of mixed solids. J Food Sci 55(2):494–497–494–515

    Google Scholar 

  47. Pollio ML, Kitic D, Favetto GJ, Chirife J (1987) Prediction and measurement of the water activity of selected saturated salt solutions at 5°C and 10°C. J Food Sci 52(4):1118–1119

    Article  CAS  Google Scholar 

  48. Chirife J (1987) Conservación de alimentos de alta humedad por métodos combinados basados en la reducción de la actividad del agua. Instituto Politécnico Nacional, México D.F., México

  49. Barbosa-Cánovas GV, Fontana AJ, Schmidt SJ, Labuza TP (eds) (2007) Water activity in foods: fundamentals and applications. Blackwell Publisher Co, Iowa, USA

    Google Scholar 

  50. Alzamora SM, Tapia MS, Argaíz A, Welti J (1993) Application of combined methods technology in minimally processed fruits. Food Res Int 26:125–130

    Article  Google Scholar 

  51. Chirife J, Buera MP (1994) Water activity, glass transition and microbial stability in concentrated/semi-moist food systems. J Food Sci 59:921–927

    Article  CAS  Google Scholar 

  52. Welti-Chanes J, Vergara-Balderas F (1995) In: Welti-Chanes J and Barbosa-Cánovas GV (eds) Food preservation by moisture control—fundamentals and applications. Technomics Publishing Co., Lancaster, PA

    Google Scholar 

  53. Aguilera JM (ed) (1997) Temas en tecnología de alimentos. Instituto Politécnico Nacional, Ciudad de México

  54. Fito P, Ortega-Rodriguez E, Barbosa-Cánovas GV (1997) Food engineering 2000. Chapman & Hall, New York

    Book  Google Scholar 

  55. Leistner L, Gorris LGM (1995) Food preservation by hurdle technology. Trends Food Sci Technol 6:41–46

    Article  CAS  Google Scholar 

  56. Leistner L, Gould G (2002) Hurdle technologies: combination treatments for food stability, safety and quality. Springer Science, New York

    Book  Google Scholar 

  57. Alzamora SM, Castro MA, Vidales SL, Nieto AB, Salvatory D (2000a) In: Alzamora SM, Tapia MS, López-Malo A (eds) Minimally processed fruits and vegetables. Aspen Publishers Inc, Gaithersburg, Maryland

    Google Scholar 

  58. Alzamora SM, Fito P, López-Malo A, Tapia MS, Parada Arias E (2000b) In: Alzamora SM, Tapia MS, López-Malo A (eds) Minimally processed fruits and vegetables. Aspen Publishers Inc, Gaithersburg, Maryland

    Google Scholar 

  59. Alzamora SM, Tapia MS, López-Malo A (2000c) Minimally processed fruits and vegetables. Aspen Publishers Inc, Gaithersburg, Maryland

    Google Scholar 

  60. Aguilera JM, Chiralt A, Fito P (2003) Dehydration and food structure. Trends Food Sci Technol 14:432–437

    Article  CAS  Google Scholar 

  61. González-Aguilar GA, Ruiz-Cruz S, Cruz-Valenzuela R, Ayala-Zabala, JF, de la Rosa LA, Álvarez-Parilla E (2008) New technologies to preserve quality fresh-cut produce. In: Gutiérrez-López GF et al. Food Engineering: Integrated Approaches. Springer, New York

  62. Rivera-López J, Vázquez-Ortiz FA, Ayala-Zavala JF, Sotelo-Mundo RR, González-Aguilar GA (2005) Cutting shape and storage temperature affect overall quality of fresh-cut papaya cv. ‘maradol’. J Food Sci 70(7):S482–S489

    Article  Google Scholar 

  63. Baeza R, Carrera-Sanchez C, Pilosof AMR, Rodríguez Patino JM (2004a) Interactions of polysaccharides with β-lactoglobulin spread monolayers at the air-water interface. Food Hydrocoll 18:959–966

    Article  CAS  Google Scholar 

  64. Baeza R, Sanchez CC, Pilosof AMR, Patino JMR (2004b) Interfacial and foaming properties of prolylenglycol alginates: Effect of degree of esterification and molecular weight. Colloids Surf B: Biointerfaces 36:139–145

    Article  CAS  Google Scholar 

  65. Martínez KD, Baeza RI, Millán F, Pilosof AMR (2005) Effect of limited hydrolysis of sunflower protein on the interactions with polysaccharides in foams. Food Hydrocoll 19:361–369

    Article  Google Scholar 

  66. Barbosa-Cánovas G, Tapia MS, Cano P (2005) Novel food technologies. Marcel Dekker, New York

    Google Scholar 

  67. Alzamora SM, Tapia MS, López-Malo A, Welti-Chanes J (2003) In: Zeuthen P, Bogh-Sorensen L (eds) Food preservation techniques. Woodhead Publishers Ltd, Cambridge, England

    Google Scholar 

  68. Alzamora SM, Salvatori D, Tapia MS, López-Malo A, Welti-Chanes J, Fito P (2005) Novel functional foods from vegetable matrices impregnated with biologically active compounds. J Food Eng 67:205–214

    Article  Google Scholar 

  69. Dorantes-Álvarez L, Barbosa-Cánovas GV, Gutiérrez-López GF (2000) In: Barbosa-Cánovas GV, Gould GW (eds) Blanching of fruits and vegetables using microwaves. Inovation in Food Processing. Technomic, Lancaster, USA, pp 149–161

    Google Scholar 

  70. Acero-Ortega C, Dorantes L, Hernández-Sánchez H, Gutiérrez-López GF, Aparicio G, Jaramillo-Flores ME (2005) Evaluation of phenylpropanoids in ten Capsicum annuum L. varieties and their inhibitory effects on Listeria monocytogenes Murray, Webb and Swann Scott A. Food Sci Technol Int 11(1):5–10

    Article  CAS  Google Scholar 

  71. Alvarado JD, Aguilera JM (eds) (2001) Métodos para medir propiedades físicas en industrias de alimentos. Acribia S.A, Zaragoza

    Google Scholar 

  72. Lozano JE, Añón C, Parada-Arias E, Barbosa-Cánovas GV (2000) Trends in food engineering. Technomics Publishers Co Inc, Lancaster, PA

    Book  Google Scholar 

  73. Gutiérrez-López GF, Barbosa-Cánovas GV, Welti-Chanes J, Parada-Arias E (2008) Food engineering: integrated approaches. Springer, New York

    Book  Google Scholar 

  74. Aguilera JM, Barbosa-Cánovas GV, Simpson R, Welti-Chanes J, Bermúdez-Aguirre D (eds) (2011) Food engineering interfaces. Springer Publishers, New York

    Google Scholar 

  75. Tapia de Daza MS, Alzamora SM, Welti-Chanes J (1996) Combination of preservation factors applied to minimal processing of foods. Crit Rev Food Sci Nutr 36(6):629–659

    Article  CAS  Google Scholar 

  76. Flachsbarth I, Willaarts B, Xi H, Pitois G, Mueller ND, Ringler C, Garrido A (2015) The role of Latin America’s land and water resources for global food security: environmental trade-offs of future food production pathways. PLoS One 10(1):e0116733. https://doi.org/10.1371/journal.pone.0116733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Parada-Arias E (1994) IMF: an iberoamerican cooperative project. J Food Eng 22:445–452

    Article  Google Scholar 

  78. Welti-Chanes J (2018) Personal communication

  79. Rabobank (2015) https://economics.rabobank.com/publications/2015/september/latin-america-agricultural-perspectives/. Accessed on April 25, 2018

  80. Welti-Chanes J, Vergara-Balderas F, Palou E, Alzamora S, Aguilera JM, Barbosa-Cánovas GV, Tapia MS, Parada E (2002) Food engineering education in Mexico, Central and South America. J Food Sci Educ 1:59–65

    Article  Google Scholar 

  81. Anonymous (2014) Obesity prevention in Latin America: now is the time. Lancet Diabetes Endocrinol 2(4):263

    Article  Google Scholar 

  82. FAO and PAHO (2017) Panorama of food and nutritional security in Latin America and the Caribbean 2017. Santiago

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Miguel Aguilera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilera, J.M., Gutiérrez-López, G.F. Food Engineering in Ibero-America: the Contribution of the CYTED Program (1986–2005). Food Eng Rev 10, 187–197 (2018). https://doi.org/10.1007/s12393-018-9179-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-018-9179-9

Keywords

Navigation