Food Engineering Reviews

, Volume 8, Issue 3, pp 306–322 | Cite as

Evaluation of Food Quality and Safety with Hyperspectral Imaging (HSI)

  • Raúl Siche
  • Ricardo Vejarano
  • Victor Aredo
  • Lia Velasquez
  • Erick Saldaña
  • Roberto Quevedo
Review Article

Abstract

The current lifestyle and a greater awareness of the benefits of proper nutrition demand requirements for products offered in the market, being very important the safety, sensory attributes and composition of these respect to the benefits from their constituents, which in most of cases can only be assessed using techniques that require high investment of human, technological and time resources. This has caused the food industry to seek to develop products, besides the aforementioned requirements, which use technologies with less product loss during the analysis. Of all the available options, hyperspectral imaging technology is shown as one of the most promising alternatives, being a nondestructive analysis technology that can easily engage in productive processes. In this review, we collect the most important studies conducted using the hyperspectral imaging technology in assessing the quality and safety of food products, such as fruits and vegetables, legumes, cereals, meats, dairy and egg products.

Keywords

Hyperspectral imaging Spectral signature Food analysis Food quality and safety Nondestructive 

References

  1. 1.
    Abdel-Nour N, Ngadi M (2011) Detection of omega-3 fatty acid in designer eggs using hyperspectral imaging. Int J Food Sci Nutr 62(4):418–422CrossRefGoogle Scholar
  2. 2.
    Achata E, Esquerre C, O’Donnell C, Gowen A (2015) A study on the application of near infrared hyperspectral chemical imaging for monitoring moisture content and water activity in low moisture systems. Molecules 20:2611–2621CrossRefGoogle Scholar
  3. 3.
    Andrés S, Silva A, Soares-Pereira AL, Martins C, Bruno-Soares AM, Murray I (2008) The use of visible and near infrared reflectance spectroscopy to predict beef M. Longissimus thoracis et lumborum quality attributes. Meat Sci 78:217–224CrossRefGoogle Scholar
  4. 4.
    Ariana DP, Lu R, Guyer DE (2006) Near-infrared hyperspectral reflectance imaging for detection of bruises on pickling cucumbers. Comput Electron Agric 53:60–70CrossRefGoogle Scholar
  5. 5.
    Ariana DP, Lu R (2008) Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging: Part II. Performance of a prototype. Sens Instrum Food Qual Saf 2:152–160CrossRefGoogle Scholar
  6. 6.
    Ariana DP, Lu R (2008) Detection of internal defect in pickling cucumbers using hyperspectral transmittance imaging. Trans ASABE 51:705–713CrossRefGoogle Scholar
  7. 7.
    Barbin D, ElMasry G, Sun D-W, Allen P, Noha M (2012) Non-destructive assessment of microbial contamination in porcine meat using NIR hyperspectral imaging. Innov Food Sci Emerg Techol 17:180–191CrossRefGoogle Scholar
  8. 8.
    Barbin D, Sun D-W, Su C (2013) NIR hyperspectral imaging as non-destructive evaluation tool for the recognition of fresh and frozen–thawed porcine longissimus dorsi muscles. Innov Food Sci Emerg Techol 18:226–236CrossRefGoogle Scholar
  9. 9.
    Burger J, Geladi P (2006) Hyperspectral NIR image regression part II: dataset preprocessing diagnostics. J Chemom 20:106–119CrossRefGoogle Scholar
  10. 10.
    Chau A, Whitworth M, Leadley C, Millar S (2009) Innovative sensors to rapidly and non-destructively determine fish freshness. Seafish Industry Authority Report No CMS/REP/110284/1Google Scholar
  11. 11.
    Chelladurai V, Karuppiah K, Jayas DS, Fields PG, White NDG (2014) Detection of Callosobruchus maculatus (F.) infestation in soybean using soft X-ray and NIR hyperspectral imaging techniques. J Stored Prod Res 57:43–48CrossRefGoogle Scholar
  12. 12.
    Chen S, Zhang F, Ning J, Liu X, Zhang Z, Yang S (2015) Predicting the anthocyanin content of wine grapes by NIR hyperspectral imaging. Food Chem 172:788–793CrossRefGoogle Scholar
  13. 13.
    Cheng X, Chen YR, Tao Y, Wang CY, Kim MS, Lefcourt AM (2004) A novel integrated PCA and FLD method on hyperspectral image feature extraction for cucumber chilling damage inspection. Trans ASAE 47(4):1313–1320CrossRefGoogle Scholar
  14. 14.
    Cheng J-H, Sun D-W (2015) Rapid and non-invasive detection of fish microbial spoilage by visible and near infrared hyperspectral imaging and multivariate analysis. LWT Food Sci Technol 62(2):1060–1068CrossRefGoogle Scholar
  15. 15.
    Cheng J-H, Sun D-W, Pu H-B, Wang Q-J, Chen Y-N (2015) Suitability of hyperspectral imaging for rapid evaluation of thiobarbituric acid (TBA) value in grass carp (Ctenopharyngodon idella) fillet. Food Chem 171:258–265CrossRefGoogle Scholar
  16. 16.
    Choudhary R, Mahesh S, Paliwal J, Jayas DS (2009) Identification of wheat classes using wavelet features from near infrared hyperspectral images of bulk samples. Biosyst Eng 102:115–127CrossRefGoogle Scholar
  17. 17.
    Cluff K, Naganathan GK, Subbiah J, Lu R, Calkins CR, Samal A (2008) Optical scattering in beef steak to predict tenderness using hyperspectral imaging in the VIS-NIR region. Sens Instrum Food Qual Saf 2:189–196CrossRefGoogle Scholar
  18. 18.
    Cogdill RP, Hurburgh CR Jr, Rippke GR (2004) Single-kernel maize analysis by near-infrared hyperspectral imaging. Trans ASAE 47(1):311–320CrossRefGoogle Scholar
  19. 19.
    Dai Q, Cheng J-H, Sun D-W (2015) Potential of visible/near-infrared hyperspectral imaging for rapid detection of freshness in unfrozen and frozen prawns. J Food Eng 149:97–104CrossRefGoogle Scholar
  20. 20.
    Del Fiore A, Reverberi M, Ricelli A, Pinzari F, Serranti S, Fabbri AA, Bonifazi G, Fanelli C (2010) Early detection of toxigenic fungi on maize by hyperspectral imaging analysis. Int J Food Microbiol 144:64–71CrossRefGoogle Scholar
  21. 21.
    Delwiche SR, Kim MS, Dong Y (2011) Fusarium damage assessment in wheat kernels by Vis/NIR hyperspectral imaging. Sens Instrum Food Qual Saf 5(2):63–71CrossRefGoogle Scholar
  22. 22.
    Dransfield E (1999) In: Pearson AM, Dutson TR (eds) Quality attributes and their measurement in meat, poultry and fish products, vol 11. Aspen Publication, Maryland, pp 289–315Google Scholar
  23. 23.
    Du CJ, Sun DW (2004) Recent developments in the applications of image processing techniques for food quality evaluation. Trends Food Sci Technol 15:230–249CrossRefGoogle Scholar
  24. 24.
    ElMasry G, Wang N, ElSayed A, Ngadi M (2007) Hyperspectral imaging for non-destructive determination of some quality attributes for strawberry. J Food Eng 81:98–107CrossRefGoogle Scholar
  25. 25.
    ElMasry G, Wang N, Vigneault C, Qiao J, ElSayed A (2008) Early detection of apple bruises on different background colors using hyperspectral imaging. LWT Food Sci Technol 41:337–345CrossRefGoogle Scholar
  26. 26.
    ElMasry G, Wang N, Vigneault C (2009) Detecting chilling injury in Red Delicious apple using hyperspectral imaging and neural networks. Postharvest Biol Technol 52(1):1–8CrossRefGoogle Scholar
  27. 27.
    ElMasry G, Wold JP (2008) High-speed assessment of fat and water content distribution in fish fillets using online imaging spectroscopy. J Agric Food Chem 56(17):7672–7677CrossRefGoogle Scholar
  28. 28.
    ElMasry G, Kamruzzaman M, Sun D-W, Allen P (2012) Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review. Crit Rev Food Sci 52(11):999–1023CrossRefGoogle Scholar
  29. 29.
    Felter LM (2007) Predicting aged beef tenderness with hyperspectral imaging and the relationship to muscle properties. Master’s thesis: Animal Science. University of Nebraska-Lincoln, USAGoogle Scholar
  30. 30.
    Fernandes AM, Oliveira P, Moura JP, Oliveira AA, Falco V, Correia MJ, Melo-Pinto P (2011) Determination of anthocyanin concentration in whole grape skins using hyperspectral imaging and adaptive boosting neural networks. J Food Eng 105:216–226CrossRefGoogle Scholar
  31. 31.
    Fernández-Ibañez V, Soldado A, Martínez-Fernández A, de la Roza-Delgado B (2009) Application of near infrared spectroscopy for rapid detection of aflatoxin B1 in maize and barley as analytical quality assessment. Food Chem 113:629–634CrossRefGoogle Scholar
  32. 32.
    Fu X, Kim M, Chao K, Qin J, Lim J, Lee H, Garrido-Varo A, Pérez-Marín D, Ying Y (2014) Detection of melamine in milk powders based on NIR hyperspectral imaging and spectral similarity analyses. J Food Eng 124:97–104CrossRefGoogle Scholar
  33. 33.
    Goetz AFH, Vane G, Solomon JE, Rock BN (1985) Imaging spectroscopy for earth remote sensing. Science 228:1147–1153CrossRefGoogle Scholar
  34. 34.
    Gou P, Comaposada J, Arnau J (2002) Meat pH and meat fibre direction effects on moisture diffusivity in salted ham muscles dried at 5 °C. Meat Sci 61:25–31CrossRefGoogle Scholar
  35. 35.
    Gowen AA, Taghizadeh M, O’Donnell CP (2009) Identification of mushrooms subjected to freeze damage using hyperspectral imaging. J Food Eng 93(1):7–12CrossRefGoogle Scholar
  36. 36.
    Gowen AA, Burger J, O’Callaghan D, O’Donnell CP (2009b) Potential applications of hyperspectral imaging for quality control in dairy foods. In: 1st international workshop on computer image analysis in agriculture, Potsdam, GermanyGoogle Scholar
  37. 37.
    Guerrero L, Gou P, Arnau J (1999) The influence of meat pH on mechanical and sensory textural properties of dry-cured ham. Meat Sci 52:267–273CrossRefGoogle Scholar
  38. 38.
    Harvey AR, Lawlor J, McNaught AI, Fletcher-Holmes DW (2002) Hyperspectral imaging for the detection of retinal disease. Proc SPIE 4816:325–335CrossRefGoogle Scholar
  39. 39.
    Heia K, Sivertsen AH, Stormo SK, Elvevoll E, Wold JP, Nilsen H (2007) Detection of nematodes in cod (Gadus morhua) fillets by imaging spectroscopy. J Food Sci 72(1):11–15CrossRefGoogle Scholar
  40. 40.
    Heitschmidt GW, Park B, Lawrence KC, Windham WR, Smith DP (2007) Improved hyperspectral imaging system for fecal detection on poultry carcasses. Trans ASABE 50(4):1427–1432CrossRefGoogle Scholar
  41. 41.
    Huang H, Liu L, Ngadi MO, Gariépy C (2014) Rapid and non-invasive quantification of intramuscular fat content of intact pork cuts. Talanta 119:385–395CrossRefGoogle Scholar
  42. 42.
    Huang M, Wang Q, Zhang M, Zhu Q (2014) Prediction of color and moisture content for vegetable soybean during drying using hyperspectral imaging technology. J Food Eng 128:24–30CrossRefGoogle Scholar
  43. 43.
    Jackman P, Sun D-W, Allen P (2010) Prediction of beef palatability from color, marbling and surface texture features of longissimus dorsi. J Food Eng 96(1):151–165CrossRefGoogle Scholar
  44. 44.
    Jones HG, Vaughan RA (2010) Remote sensing of vegetation: principles, techniques and applications. Oxford University Press, New YorkGoogle Scholar
  45. 45.
    Jowitt R (1974) The terminology of food texture. J Texture Stud 5:351–358CrossRefGoogle Scholar
  46. 46.
    Kaliramesh S, Chelladurai V, Jayas DS, Alagusundaram K, White NDG, Fields PG (2013) Detection of infestation by Callosobruchus maculatus in mung bean using near-infrared hyperspectral imaging. J Stored Prod Res 52:107–111CrossRefGoogle Scholar
  47. 47.
    Kamruzzaman M, ElMasry G, Sun D-W, Allen P (2011) Application of NIR hyperspectral imaging for discrimination of lamb muscles. J Food Eng 104:332–340CrossRefGoogle Scholar
  48. 48.
    Kamruzzaman M, Barbin D, ElMasry G, Sun D-W, Allen P (2012) Potential of hyperspectral imaging and pattern recognition for categorization and authentication of red meat. Innov Food Sci Emerg Techol 16:316–325CrossRefGoogle Scholar
  49. 49.
    Kamruzzaman M, Sun D-W, ElMasry G, Allen P (2013) Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta 103:130–136CrossRefGoogle Scholar
  50. 50.
    Kamruzzaman M, Makino Y, Oshita S (2015) Non-invasive analytical technology for the detection of contamination, adulteration, and authenticity of meat, poultry, and fish: a review. Anal Chim Acta 853:19–29CrossRefGoogle Scholar
  51. 51.
    Kandpal LM, Lee S, Kim M, Bae H, Cho B-K (2015) Short wave infrared (SWIR) hyperspectral imaging technique for examination of aflatoxin B1 (AFB1) on corn kernels. Food Control 51:171–176CrossRefGoogle Scholar
  52. 52.
    Kim I, Kim MS, Chen YR, Kong SG (2004) Detection of skin tumors on chicken carcasses using hyperspectral fluorescence imaging. Trans ASAE 47(5):1785–1792CrossRefGoogle Scholar
  53. 53.
    Kim I, Xu C, Kim MS (2006) Poultry skin tumor detection in hyperspectral images using radial basis probabilistic neural network. Adv Neural Netw 3973:770–776Google Scholar
  54. 54.
    Kim MS, Chen YR, Cho BK, Chao K, Yang CC, Lefcourt AM, Chan D (2007) Hyperspectral reflectance and fluorescence line-scan imaging for online defects and fecal contamination inspection of apples. Sens Instrum Food Qual Saf 1:151–159CrossRefGoogle Scholar
  55. 55.
    Kim MS, Lefcourt AM, Chen Y, Tao Y (2005) Automated detection of fecal contamination of apples based on multispectral fluorescence image fusion. J Food Eng 71(1):85–91CrossRefGoogle Scholar
  56. 56.
    Kong SG, Chen YR, Kim I, Kim MS (2004) Analysis of hyperspectral fluorescence images for poultry skin tumor inspection. Appl Opt 43(4):824–833CrossRefGoogle Scholar
  57. 57.
    Lee H, Kim MS, Jeong D, Delwiche SR, Chao K, Cho B-K (2014) Detection of cracks on tomatoes using a hyperspectral near-infrared reflectance imaging system. Sensors 14:18837–18850CrossRefGoogle Scholar
  58. 58.
    Liu Y, Chen YR, Wang CY, Chan DE, Kim MS (2005) Development of a simple algorithm for the detection of chilling injury in cucumbers from visible/near-infrared hyperspectral imaging. Appl Spectrosc 59(1):78–85CrossRefGoogle Scholar
  59. 59.
    Liu M, Zhang L, Guo E (2008) Hyperspectral laser-induced fluorescence imaging for non-destructive assessing soluble solids content of orange. Comput Comput Technol Agric 1:51–59Google Scholar
  60. 60.
    Liu D, Pu H, Sun D-W, Wang L, Zeng X-A (2014) Combination of spectra and texture data of hyperspectral imaging for prediction of pH in salted meat. Food Chem 160:330–337CrossRefGoogle Scholar
  61. 61.
    Liu D, Sun D-W, Qu J, Zeng X-A, Pu H, Ma J (2014) Feasibility of using hyperspectral imaging to predict moisture content of porcine meat during salting process. Food Chem 152:197–204CrossRefGoogle Scholar
  62. 62.
    Lu R (2003) Detection of bruises on apple using near-infrared hyperspectral imaging. Trans ASAE 46(2):523–530Google Scholar
  63. 63.
    Lu R, Peng Y (2006) Hyperspectral scattering for assessing peach fruit firmness. Biosyst Eng 93(2):161–171CrossRefGoogle Scholar
  64. 64.
    Mahesh S, Manickavasagan A, Jayas DS, Paliwal J, Whiteb NDG (2008) Feasibility of near-infrared hyperspectral imaging to differentiate Canadian wheat classes. Biosyst Eng 101:50–57CrossRefGoogle Scholar
  65. 65.
    Mahesh S, Jayas DS, Paliwal J, White NDG (2011) Identification of wheat classes at different moisture levels using near-infrared hyperspectral images of bulk samples. Sens Instrum Food Qual Saf 5(1):1–9CrossRefGoogle Scholar
  66. 66.
    Mahesh S, Jayas DS, Paliwal J, White NDG (2015) Hyperspectral imaging to classify and monitor quality of agricultural materials. J Stored Prod Res 61:17–26CrossRefGoogle Scholar
  67. 67.
    Mahmoud B, Bachman G, Linton R (2010) Inactivation of Escherichia coli O157: H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on spinach leaves by X-ray. Food Microbiol 27(1):24–28CrossRefGoogle Scholar
  68. 68.
    Manley M, Williams P, Nilsson D, Geladi P (2009) Near infrared hyperspectral imaging for the evaluation of endosperm texture in whole yellow maize (Zea maize L.) kernels. J Agric Food Chem 57:8761–8769CrossRefGoogle Scholar
  69. 69.
    Menesatti P, Zanella AS, D’Andrea S, Costa C, Paglia G, Pallottino F (2009) Supervised multivariate analysis of hyper-spectral NIR images to evaluate the starch index of apples. Food Bioprocess Technol 2:308–314CrossRefGoogle Scholar
  70. 70.
    Morata A, Loira I, Vejarano R, Bañuelos MA, Sanz P, Otero L, Suárez-Lepe JA (2015) Grape processing by high hydrostatic pressure: effect on microbial populations, phenol extraction and wine quality. Food Bioprocess Technol 8(2):277–286CrossRefGoogle Scholar
  71. 71.
    Naganathan GK, Grimes LM, Subbiah J, Calkins CR, Samal A, Meyer GE (2008) Visible/near-infrared hyperspectral imaging for beef tenderness prediction. Comput Electron Agric 64:225–233CrossRefGoogle Scholar
  72. 72.
    Naganathan GK, Grimes LM, Subbiah J, Calkins CR, Samal A, Meyer GE (2008) Partial least squares analysis of near-infrared hyperspectral images for beef tenderness prediction. Sens Instrum Food Qual Saf 2:178–188CrossRefGoogle Scholar
  73. 73.
    Naganathan GK, Cluff K, Samal A, Calkins CR, Jones DD, Lorenzen CL, Subbiah J (2015) A prototype on-line AOTF hyperspectral image acquisition system for tenderness assessment of beef carcasses. J Food Eng 154:1–9CrossRefGoogle Scholar
  74. 74.
    Nagata M, Tallada JG, Kobayashi T (2006) Bruise detection using NIR hyperspectral imaging for strawberry (Fragaria x ananassa Duch.). Environ Control Biol 44(2):133–142CrossRefGoogle Scholar
  75. 75.
    Nguyen Do Trong NN, Tsuta M, Nicolaï BM, Baerdemaeker JD, Saeys W (2011) Prediction of optimal cooking time for boiled potatoes by hyperspectral imaging. J Food Eng 105(4):617–624CrossRefGoogle Scholar
  76. 76.
    Nicolaï BM, Beullens EB, Peirs A, Saeys W, Theron KI, Lammertyna J (2007) Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biol Technol 46(2):99–118CrossRefGoogle Scholar
  77. 77.
    Nogales-Bueno J, Hernández-Hierro JM, Rodríguez-Pulido FJ, Heredia FJ (2014) Determination of technological maturity of grapes and total phenolic compounds of grape skins in red and white cultivars during ripening by near infrared hyperspectral image: a preliminary approach. Food Chem 152:586–591CrossRefGoogle Scholar
  78. 78.
    Nogales-Bueno J, Baca-Bocanegra B, Rodríguez-Pulido FJ, Heredia FJ, Hernández-Hierro JM (2015) Use of near infrared hyperspectral tools for the screening of extractable polyphenols in red grape skins. Food Chem 172:559–564CrossRefGoogle Scholar
  79. 79.
    Nogales-Bueno J, Rodríguez-Pulido FJ, Heredia FJ, Hernández-Hierro JM (2015) Comparative study on the use of anthocyanin profile, color image analysis and near-infrared hyperspectral imaging as tools to discriminate between four autochthonous red grape cultivars from La Rioja (Spain). Talanta 131:412–416CrossRefGoogle Scholar
  80. 80.
    Noh HK, Lu R (2007) Hyperspectral laser-induced fluorescence imaging for assessing apple fruit quality. Postharvest Biol Technol 43:193–201CrossRefGoogle Scholar
  81. 81.
    Ononye AE, Yao H, Hruska Z, Kincaid R, Brown RL, Cleveland TE (2009) Automatic detection of aflatoxin contaminated corn kernels using dual-band imagery. Proc SPIE 7315:73150RCrossRefGoogle Scholar
  82. 82.
    Ottestad S, Høy M, Stevik A, Wold JP (2009) Prediction of ice fraction and fat content in super-chilled salmon by non-contact interactance near infrared imaging. J Near Infrared Spectrosc 17(2):77–87CrossRefGoogle Scholar
  83. 83.
    Park B, Lawrence KC, Windham WR, Buhr RJ (2002) Hyperspectral Imaging for detecting fecal and ingesta contaminants on poultry carcasses. Trans ASAE 45(6):2017–2026CrossRefGoogle Scholar
  84. 84.
    Park B, Lawrence KC, Windham WR, Smith DP (2006) Performance of hyperspectral imaging system for poultry surface fecal contaminant detection. J Food Eng 75:340–348CrossRefGoogle Scholar
  85. 85.
    Park B, Windham WR, Lawrence KC, Smith DP (2007) Contaminant classification of poultry hyperspectral imagery using spectral angle mapper algorithm. Biosyst Eng 96(3):323–333CrossRefGoogle Scholar
  86. 86.
    Peng Y, Lu R (2008) Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biol Technol 48:52–62CrossRefGoogle Scholar
  87. 87.
    Peng Y, Wu J (2008) Hyperspectral scattering profiles for prediction of beef tenderness. American Society of Agricultural and Biological Engineers, St. Joseph, MichiganGoogle Scholar
  88. 88.
    Peng Y, Zhang J, Wang W, Li Y, Wu J, Huang H, Gao X, Jiang W (2011) Potential prediction of the microbial spoilage of beef using spatially resolved hyperspectral scattering profiles. J Food Eng 102:163–169CrossRefGoogle Scholar
  89. 89.
    Peng Y, Zhang J, Wu J, Hang H (2009) Hyperspectral scattering profiles for prediction of the microbial spoilage of beef. Proc SPIE 7315:73150Q1–73150Q12CrossRefGoogle Scholar
  90. 90.
    Qiao J, Ngadi MO, Wang N, Gariepy C, Prasher SO (2007) Pork quality and marbling level assessment using a hyperspectral imaging system. J Food Eng 83(1):10–16CrossRefGoogle Scholar
  91. 91.
    Qiao J, Ngadi MO, Wang N, Gunenc A, Monroy M, Gariepy C, Prasher S (2007) Pork quality classification using a hyperspectral imaging system and neural network. Int J Food Eng 3(1):1–12CrossRefGoogle Scholar
  92. 92.
    Qiao J, Wang N, Ngadi M, Gunenc A, Monroy M, Gariepy C, Prasher S (2007) Prediction of drip-loss, pH and color for pork using a hyperspectral imaging technique. Meat Sci 76(1):1–8CrossRefGoogle Scholar
  93. 93.
    Qin J, Lu R (2007) Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging. Appl Spectrosc 61(4):388–396CrossRefGoogle Scholar
  94. 94.
    Qin J, Lu R (2008) Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique. Postharvest Biol Technol 49:355–365CrossRefGoogle Scholar
  95. 95.
    Qin J, Lu R, Peng Y (2009) Prediction of apple internal quality using spectral absorption and scattering properties. Trans ASABE 52(2):499–507CrossRefGoogle Scholar
  96. 96.
    Qin J, Chao K, Kim M, Lu R, Burks T (2013) Hyperspectral and multispectral imaging for evaluating food safety and quality. J Food Eng 118:157–171CrossRefGoogle Scholar
  97. 97.
    Qin J, Chao K, Kim M (2010) Raman chemical imaging system for food safety and quality inspection. Trans ASABE 53(6):1873–1882CrossRefGoogle Scholar
  98. 98.
    Rajkumar P, Wang N, Eimasry G, Raghavan GSV, Gariepy Y (2012) Studies on banana fruit quality and maturity stages using hyperspectral imaging. J Food Eng 108:194–200CrossRefGoogle Scholar
  99. 99.
    Saldaña E, Siche R, Luján M, Quevedo R (2013) Review: computer vision applied to the inspection and quality control of fruits and vegetables. Braz J Food Technol 16(4):254–272CrossRefGoogle Scholar
  100. 100.
    Segtnan VH, Høy M, Lundby F, Narum B, Wold JP (2009) Fat distributional analysis in salmon fillets using non-contact near infrared interactance imaging: a sampling and calibration strategy. J Near Infrared Spectrosc 17(5):247–253CrossRefGoogle Scholar
  101. 101.
    Segtnan VH, Høy M, Sørheim O, Kohler A, Lundby F, Wold JP, Ofstad R (2009) Noncontact salt and fat distributional analysis in salted and smoked salmon fillets using X-ray computed tomography and NIR interactance imaging. J Agric Food Chem 57:1705–1710CrossRefGoogle Scholar
  102. 102.
    Shaw G, Manolakis D (2002) Signal processing for hyperspectral image exploitation. IEEE Signal Process Mag 19(1):12–16CrossRefGoogle Scholar
  103. 103.
    Shen QW, Means WJ, Underwood KR, Thompson SA, Zhu MJ, McCormick RJ, Ford SP, Ellis M, Du M (2006) Early post-mortem AMP-activated protein kinase (AMPK) activation leads to phosphofructokinase-2 and -1 (PFK-2 and PFK-1) phosphorylation and the development of pale, soft, and exudative (PSE) conditions in porcine longissimus muscle. J Agric Food Chem 54(15):5583–5589CrossRefGoogle Scholar
  104. 104.
    Singh CB, Jayas DS, Paliwal J, White NDG (2009) Detection of insect-damaged wheat kernels using near-infrared hyperspectral imaging. J Stored Prod Res 45:151–158CrossRefGoogle Scholar
  105. 105.
    Singh CB, Jayas DS, Paliwal J, White NDG (2010) Detection of midge-damaged wheat kernels using short-wave near-infrared hyperspectral and digital color imaging. Biosyst Eng 105:380–387CrossRefGoogle Scholar
  106. 106.
    Singh CB, Jayas DS, Paliwal J, White NDG (2010) Identification of insect-damaged wheat kernels using short-wave near-infrared hyperspectral and digital colour imaging. Comput Electron Agric 73(2):118–125CrossRefGoogle Scholar
  107. 107.
    Siripatrawan U, Makino Y (2015) Monitoring fungal growth on brown rice grains using rapid and non-destructive hyperspectral imaging. Int J Food Microbiol 199:93–100CrossRefGoogle Scholar
  108. 108.
    Siripatrawan U, Makino Y, Kawagoe Y, Oshita S (2010) Near infrared spectroscopy integrated with chemometrics for rapid detection of E. coli ATCC 25922 and E. coli K12. Sens Actuators B Chem 148(2):366–370CrossRefGoogle Scholar
  109. 109.
    Siripatrawan U, Makino Y, Kawagoe Y, Oshita S (2011) Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging. Talanta 85:276–281CrossRefGoogle Scholar
  110. 110.
    Suthiluk P, Saranwong S, Kawano S, Numthuam S, Satake T (2008) Possibility of using near infrared spectroscopy for evaluation of bacterial contamination in shredded cabbage. Int J Food Sci Technol 43:160–165CrossRefGoogle Scholar
  111. 111.
    Tallada J, Nagata M, Kobayashi T (2006) Non-destructive estimation of firmness of strawberries (Fragaria x ananassa Duch.) using NIR hyperspectral imaging. Environ Control Biol 44(4):245–255CrossRefGoogle Scholar
  112. 112.
    Tao F, Peng Y, Li Y, Chao K, Dhakal S (2012) Simultaneous determination of tenderness and Escherichia coli contamination of pork using hyperspectral scattering technique. Meat Sci 90:851–857CrossRefGoogle Scholar
  113. 113.
    Thanonkaew A, Benjakul S, Visessanguan W, Decker EA (2006) The effect of metal ions on lipid oxidation, colour and physicochemical properties of cuttlefish (Sepia pharaonis) subjected to multiple freeze–thaw cycles. Food Chem 95(4):591–599CrossRefGoogle Scholar
  114. 114.
    Vélez N, Gómez-Sanchis J, Chanona-Pérez J, Carrasco JJ, Millán-Giraldo M, Lorente D, Cubero S, Blasco J (2014) Early detection of mechanical damage in mango using NIR hyperspectral images and machine learning. Biosyst Eng 122:91–98CrossRefGoogle Scholar
  115. 115.
    Wang W, Heitschmidt G, Windham W, Feldner P, Ni X, Chu X (2015) Feasibility of detecting aflatoxin B1 on inoculated maize kernels surface using Vis/NIR hyperspectral imaging. J Food Sci 80(1):M116–M122CrossRefGoogle Scholar
  116. 116.
    Wang W, Li C, Tollner EW, Gitaitis RD, Rains GC (2012) Shortwave infrared hyperspectral imaging for detecting sour skin (Burkholderia cepacia)-infected onions. J Food Eng 109(1):38–48CrossRefGoogle Scholar
  117. 117.
    Wang W, Peng YK, Zhang XL (2010) Study on modeling method of total viable count of fresh pork meat based on hyperspectral imaging system. Spectrosc Spectr Anal 30(2):411–415Google Scholar
  118. 118.
    Weinstock BA, Janni J, Hagen L, Wright S (2006) Prediction of oil and oleic acid concentrations in individual corn (Zea mays L.) kernels using near-infrared reflectance hyperspectral imaging and multivariate analysis. Appl Spectrosc 60:9–16CrossRefGoogle Scholar
  119. 119.
    Williams P, Geladi P, Britz T, Manley M (2012) Investigation of fungal development in maize kernels using NIR hyperspectral imaging and multivariate data analysis. J Cereal Sci 55:272–278CrossRefGoogle Scholar
  120. 120.
    Williams P, Geladi P, Fox G, Manley M (2009) Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis. Anal Chim Acta 653:121–130CrossRefGoogle Scholar
  121. 121.
    Wold JP, Westad F, Heia K (2001) Detection of parasites in cod fillets by using SIMCA classification in multispectral images in the visible and NIR region. Appl Spectrosc 55:1025–1034CrossRefGoogle Scholar
  122. 122.
    Wu D, Sun D-W (2013) Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review—Part I: Fundamentals. Innov Food Sci Emerg Techol 19:1–14CrossRefGoogle Scholar
  123. 123.
    Wu D, Sun D-W (2013) Potential of time series-hyperspectral imaging (TS-HSI) for non-invasive determination of microbial spoilage of salmon flesh. Talanta 111:39–46CrossRefGoogle Scholar
  124. 124.
    Xie C, Wang Q, He Y (2014) Identification of different varieties of sesame oil using near-infrared hyperspectral imaging and chemometrics algorithms. PLoS One 9(5):e98522CrossRefGoogle Scholar
  125. 125.
    Xing J, Bravo C, Jancsok PT, Ramon H, De Baerdemaeker J (2005) Detecting bruises on “golden delicious” apples using hyperspectral imaging with multiple wavebands. Biosyst Eng 90(1):27–36CrossRefGoogle Scholar
  126. 126.
    Xing J, Hung PV, Symons S, Shahin M, Hatcher D (2009) Using a short wavelength infrared (SWIR) hyperspectral imaging system to predict alpha amylase activity in individual Canadian western wheat kernels. Sens Instrum Food Qual Saf 3:211–218CrossRefGoogle Scholar
  127. 127.
    Xiong Z, Sun D-W, Pu H, Zhu Z, Luo M (2015) Combination of spectra and texture data of hyperspectral imaging for differentiating between free-range and broiler chicken meats. LWT Food Sci Technol 60(2):649–655CrossRefGoogle Scholar
  128. 128.
    Xiong Z, Sun D-W, Xie A, Han Z, Wang L (2015) Potential of hyperspectral imaging for rapid prediction of hydroxyproline content in chicken meat. Food Chem 175:417–422CrossRefGoogle Scholar
  129. 129.
    Xiong Z, Sun D-W, Xie A, Pu H, Han Z, Luo M (2015) Quantitative determination of total pigments in red meats using hyperspectral imaging and multivariate analysis. Food Chem 178:339–345CrossRefGoogle Scholar
  130. 130.
    Yang C-C, Chao K, Chen Y-R, Early HL (2005) Systemically diseased chicken identification using multispectral images and region of interest analysis. Comput Electron Agric 49:255–271CrossRefGoogle Scholar
  131. 131.
    Yao H, Hruska Z, Brown RL, Cleveland TE (2006) Hyperspectral bright greenish-yellow fluorescence (BGYF) imaging of aflatoxin contaminated corn kernels. Proc SPIE 6381:63810B-1–63810B-8CrossRefGoogle Scholar
  132. 132.
    Yoon SC, Lawrence KC, Smith DP, Park B, Windham WR (2008) Embedded bone fragment detection in chicken fillets using transmittance image enhancement and hyperspectral reflectance imaging. Sens Instrum Food Qual Saf 2:197–207CrossRefGoogle Scholar
  133. 133.
    Zhang H, Paliwal J, Jayas DS, White NDG (2007) Classification of fungal infected wheat kernels using near-infrared reflectance hyperspectral imaging and support vector machine. Trans ASABE 50(5):1779–1785CrossRefGoogle Scholar
  134. 134.
    Zhang W, Pan L, Tu S, Zhan G, Tu K (2015) Non-destructive internal quality assessment of eggs using a synthesis of hyperspectral imaging and multivariate analysis. J Food Eng 157:41–48CrossRefGoogle Scholar
  135. 135.
    Zhao J, Vittayapadung S, Chen Q, Chaitep S, Chuaviroj R (2009) Non-destructive measurement of sugar content of apple using hyperspectral imaging technique. Maejo Int J Sci Technol 3(1):130–142Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Instituto Regional de Investigación Agraria, Facultad de Ciencias AgropecuariasUniversidad Nacional de TrujilloTrujilloPeru
  2. 2.Department of Agro-industry, Food and Nutrition, “Luiz de Queiroz” Agricultural CollegeUniversity of São PauloPiracicaba CityBrazil
  3. 3.Food Science and Technology DepartmentUniversidad de Los LagosOsornoChile

Personalised recommendations