Food Engineering Reviews

, Volume 8, Issue 2, pp 91–115 | Cite as

Food Engineering at Multiple Scales: Case Studies, Challenges and the Future—A European Perspective

  • Yrjö H. RoosEmail author
  • Peter J. Fryer
  • Dietrich Knorr
  • Heike P. Schuchmann
  • Karin Schroën
  • Maarten A. I. Schutyser
  • Gilles Trystram
  • Erich J. Windhab
Review Article


A selection of Food Engineering research including food structure engineering, novel emulsification processes, liquid and dry fractionation, Food Engineering challenges and research with comments on European Food Engineering education is covered. Food structure engineering is discussed by using structure formation in freezing and dehydration processes as examples for mixing of water as powder and encapsulation and protection of sensitive active components. Furthermore, a strength parameter is defined for the quantification of material properties in dehydration and storage. Methods to produce uniform emulsion droplets in membrane emulsification are presented as well as the use of whey protein fibrils in layer-by-layer interface engineering for encapsulates. Emulsion particles may also be produced to act as multiple reactors for food applications. Future Food Engineering must provide solutions for sustainable food systems and provide technologies allowing energy and water efficiency as well as waste recycling. Dry fractionation provides a novel solution for an energy and water saving separation process applicable to protein purification. Magnetic separation of particles advances protein recovery from wastewater streams. Food Engineering research is moving toward manufacturing of tailor-made foods, sustainable use of resources and research at disciplinary interfaces. Modern food engineers contribute to innovations in food processing methods and utilization of structure–property relationships and reverse engineering principles for systematic use of information of consumer needs to process innovation. Food structure engineering, emulsion engineering, micro- and nanotechnologies, and sustainability of food processing are examples of significant areas of Food Engineering research and innovation. These areas will contribute to future Food Engineering and novel food processes to be adapted by the food industry, including process and product development to achieve improvements in public health and quality of life. Food Engineering skills and real industry problem solving as part of academic programs must show increasing visibility besides emphasized training in communication and other soft skills.


Food Engineering Emulsion engineering Dehydration Fractionation Membrane separation Novel processing Education Sustainability 


  1. 1.
    Heldman DR, Lund DB (2011) The beginning, current, and future of food engineering: a perspective. In: Aguilera JM, Barbosa-Canovas GV, Simpson R, Welti-Chanes J, Bermudez-Aguirre D (eds) Food engineering interfaces. Springer, New York, pp 3–18Google Scholar
  2. 2.
    Brody AL, Labuza TP (2014) MIT food technology: the major driver for food technology for 50 years. J Food Sci 79(7):4–5Google Scholar
  3. 3.
    Knorr D, Jaeger H, Reineje K, Schoessler K, Froehling A, Schlueter O (2013) Emerging technologies for targeted food processing. In: Yanniotis S, Taoukis P, Stoforos NG, Karathanos VT (eds) Advances in food process engineering research and applications. Springer, New York, pp 341–374CrossRefGoogle Scholar
  4. 4.
    Roos YH (2012) Materials science of freezing and frozen foods. In: Bhandari B, Roos YH (eds) Food materials science and engineering. Wiley, Chichester UK, pp 373–386CrossRefGoogle Scholar
  5. 5.
    Slade L, Levine H (1991) Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit Rev Food Sci Nutr 30:115–360CrossRefGoogle Scholar
  6. 6.
    Roos YH (2010) Glass transition temperature and its relevance in food processing. Annu Rev Food Sci Technol 1:469–496CrossRefGoogle Scholar
  7. 7.
    van Dijke KC, de Ruiter R, Schroën K, Boom RM (2010) The mechanism of droplet formation in microfluidic EDGE systems. Soft Matter 6:321–330CrossRefGoogle Scholar
  8. 8.
    van Dijke KC, Veldhuis G, Schroën CGPH, Boom RM (2010) Simultaneous formation of many droplets in a single microfluidic droplet formation unit. AIChE J 56:833–836Google Scholar
  9. 9.
    van Dinther AMC, Schroën CGPH, Boom RM (2011) High-flux membrane separation using fluid skimming dominated convective fluid flow. J Membr Sci 371(1–2):20–27CrossRefGoogle Scholar
  10. 10.
    van Dinther AMC, Schroën CGPH, Boom RM (2013) Particle migration leads to deposition-free fractionation. J Membr Sci 440:58–66CrossRefGoogle Scholar
  11. 11.
    Windhab EJ (2009) Tailored food structure processing for personalized nutrition. In: P. Fisher P, Pollard, M, Windhab EJ (eds) Proceedings of the 5th International Symposium on Food Rheology and Structure—ISFRS 2009, June 15–18, Zürich, Switzerland, pp 52–62Google Scholar
  12. 12.
    Mezzenga R, Schurtenberger P, Burbidge A, Michel M (2005) Understanding foods as soft materials. Nat Mater 4:729–740CrossRefGoogle Scholar
  13. 13.
    Sanguansri P, Augustin MA (2006) Nanoscale materials development—a food industry perspective. Trends Food Sci Technol 17:547–556CrossRefGoogle Scholar
  14. 14.
    Van Buggenhout S, Alminger M, Lemmens L, Colle I, Knockaert G, Moelants K, Van Loey A, Hendrickx M (2010) In vitro approaches to estimate the effect of food processing on carotenoid bioavailability need through understanding of process induced microstructural changes. Trends Food Sci Technol 21:607–618CrossRefGoogle Scholar
  15. 15.
    Sagalowicz L, Leser ME (2010) Delivery systems for liquid food products. Curr Opin Colloid Interface Sci 15:61–72CrossRefGoogle Scholar
  16. 16.
    Norton I, Fryer P, Moore S (2006) Product/process integration in food manufacture: engineering sustained health. AIChE J 52:1632–1640CrossRefGoogle Scholar
  17. 17.
    McClements DJ, Decker EA, Park Y, Weiss J (2008) Designing food structure to control stability, digestion, release and adsorption of lipophilic food components. Food Biophys 3:219–228CrossRefGoogle Scholar
  18. 18.
    Singh H, Sarkar A (2011) Behaviour of protein-stabilised emulsions under various physiological conditions. Adv Colloid Interface Sci 165:47–57CrossRefGoogle Scholar
  19. 19.
    Benshitrit RC, Shani Levi S, Levi Tal S, Shimoni E, Lesmes U (2012) Development of oral food-grade delivery systems: current knowledge and future challenges. Food Funct 3:10–21CrossRefGoogle Scholar
  20. 20.
    This H (2009) Molecular gastronomy, a scientific look at cooking. Acc Chem Res 42(5):575–583CrossRefGoogle Scholar
  21. 21.
    Roos YH (1995) Phase transitions in foods. Academic Press, San DiegoGoogle Scholar
  22. 22.
    Harnkarnsujarit N, Charoenrein S, Roos YH (2012) Microstructure formation of maltodextrin and sugar matrices in freeze-dried systems. Carbohydr Polym 88:734–742CrossRefGoogle Scholar
  23. 23.
    Roos Y, Karel, M (1991) Applying state diagrams to food processing and development. Food Technol 45(12):66, 68–71, 107Google Scholar
  24. 24.
    Buera MP, Roos Y, Levine H, Slade L, Corti HR, Reid DS, Auffret T, Angell CA (2011) State diagrams for improving processing and storage of foods, biological materials, and pharmaceuticals (IUPAC Technical Report). Pure Appl Chem 83:1567–1617CrossRefGoogle Scholar
  25. 25.
    Slettengren K, Heunemann P, Knuchel O, Windhab EJ (2015) Mixing quality of powder–liquid mixtures studied by near infrared spectroscopy and colorimetry. Powder Technol 278:130–137CrossRefGoogle Scholar
  26. 26.
    Windhab EJ (1999) New developments in crystallization processing. J Therm Anal Calorim 57:171–180CrossRefGoogle Scholar
  27. 27.
    Köhler K, Schuchmann HP (2012) Emulgiertechnik, 3rd edn. Behr’s Verlag, HamburgGoogle Scholar
  28. 28.
    Landfester K (2003) Miniemulsions for nanoparticle synthesis. Top Curr Chem 227:75–123CrossRefGoogle Scholar
  29. 29.
    Rumpf R (1967) Über die Eigenschaften von Nutzstäuben. Staub Reinhalt Luft 27(1):3–13Google Scholar
  30. 30.
    Krekel J, Polke R (1992) Qualitätssicherung bei der Verfahrensentwicklung. Chem Ing Tech 64:528–535CrossRefGoogle Scholar
  31. 31.
    Schuchmann HP, Hecht LL, Gedrat M, Köhler K (2012) High-pressure homogenization for the production of emulsions. In: Eggers R (ed) Industrial high pressure applications. Processes, equipment and safety. Wiley VCH Verlag, Weinheim, pp 97–118CrossRefGoogle Scholar
  32. 32.
    Emin MA, Köhler K, Schlender M, Schuchmann HP (2011) Characterization of mixing in food extrusion and emulsification processes by using CFD. In: Nagel WE, Kröner DB, Resch MM (eds) High performance computing in science and engineering ‘10. Springer, Heidelberg, pp 443–462Google Scholar
  33. 33.
    Schuchmann HP, Köhler K, Emin MA, Schubert H (2013) Food process engineering research and innovation in a fast changing world: paradigms/case studies. In: Yanniotis S, Taoukis P, Stoforos NG, Karathanos VT (eds) Advances in food process engineering research and applications. Springer, New York, pp 41–59CrossRefGoogle Scholar
  34. 34.
    Köhler K, Schuchmann HP (2012) Simultanes Emulgieren und Mischen. Chem Ing Tech 84:1538–1544CrossRefGoogle Scholar
  35. 35.
    Grace HP (1982) Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem Eng Commun 14:225–277CrossRefGoogle Scholar
  36. 36.
    Walstra P (1983) Formation of emulsions. In: Becher P (ed) Encyclopedia of emulsion technology, vol 1. Marcel Dekker, New YorkGoogle Scholar
  37. 37.
    Bentley BJ, Leal LG (1986) An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows. J Fluid Mech 176:241–283CrossRefGoogle Scholar
  38. 38.
    Kissling K, Schütz S, Piesche M (2009) Numerical investigation of the flow field and the mechanisms of droplet deformation and break-up in a high-pressure homogenizer. Proceedings 8th World Congress of Chemical Engineering, Montreal, CanadaGoogle Scholar
  39. 39.
    Frank K, Schuchmann HP (2011) Mikrostrukturierte, multidisperse Hüllkapseln als Träger bioaktiver Substanzen: Untersuchungen zum Einfluss von molekularen Wechselwirkungen und Diffusionsbarrieren auf die Stabilität und Freisetzung von Inhaltsstoffen aus der Heidelbeere (AiF 15612 N), Forschungskreis der Ernährungsindustrie (FEI), 47–61Google Scholar
  40. 40.
    Frank K, Schuchmann HP (2012) Stability of anthocyanin-rich W/O/W-emulsions designed for intestinal release in gastrointestinal environment. J Food Sci 77:N50–N57CrossRefGoogle Scholar
  41. 41.
    Schuch A, Deiters P, Henne J, Köhler K, Schuchmann HP (2013) Production of W/O/W (water-in-oil-in-water) multiple emulsions: droplet breakup and release of water. J Colloid Interface Sci 402:157–164CrossRefGoogle Scholar
  42. 42.
    Bernewitz R, Dalitz F, Köhler K, Schuchmann HP, Guthausen G (2013) Characterisation of multiple emulsions by NMR spectroscopy and diffusometry. Microporous Mesoporous Mater 178:69–73CrossRefGoogle Scholar
  43. 43.
    Frank K (2012) Formulieren von Anthocyanen in Doppelemulsionen. Verlag Dr, Hut, MünchenGoogle Scholar
  44. 44.
    Guan X, Hailu K, Guthausen G, Wolf F, Bernewitz R, Schuchmann HP (2010) PFG-NMR on W1/O/W2-emulsions: evidence for molecular exchange between water phases. Eur J Lipid Sci Technol 112:828–837CrossRefGoogle Scholar
  45. 45.
    Gedrat M, Mages-Sauter C, Schuchmann HP (2011) Precipitation of nanoparticles in submicron emulsions induced by droplet coalescence. Chem Eng Process Process Intensif 50:220–225CrossRefGoogle Scholar
  46. 46.
    Winkelmann M, Schuchmann HP (2011) Precipitation of metal oxide nanoparticles using a miniemulsion technique. Particuology 9:502–505CrossRefGoogle Scholar
  47. 47.
    Winkelmann M, Grimm EM, Comunian T, Freudig B, Zhou Y, Gerlinger W, Sachweh B, Schuchmann HP (2013) Controlled droplet coalescence in miniemulsions to synthesize zinc oxide nanoparticles by precipitation. Chem Eng Sci 92:126–133CrossRefGoogle Scholar
  48. 48.
    Winkelmann M (2013) Über den Einfluss von Stofftransportvorgängen auf die Partikelbildung in Miniemulsionstropfen. Verlag Dr. Hut, MünchenGoogle Scholar
  49. 49.
    Hecht LL, Winkelmann M, Wagner C, Landfester K, Gerlinger W, Sachweh B, Schuchmann HP (2012) Miniemulsions for the production of nanostructured particles. Chem Eng Technol 35:1670–1676CrossRefGoogle Scholar
  50. 50.
    Hecht LL, Merkel T, Schoth A, Köhler K, Wagner C, Muñoz-Espí R, Landfester K, Schuchmann HP (2013) Emulsification of particle loaded droplets with regard to miniemulsion polymerization. Chem Eng J 229:206–216CrossRefGoogle Scholar
  51. 51.
    Hecht LL, Wagner C, Özcan Ö, Eisenbart F, Köhler K, Landfester K, Schuchmann HP (2012) Influence of the surfactant concentration on miniemulsion polymerization for the preparation of hybrid nanoparticles. Macromol Chem Phys 213:2165–2173CrossRefGoogle Scholar
  52. 52.
    Hecht LL (2013) Herstellung nanostrukturierter Partikel mittels Miniemulsionspolymerisation. Verlag Dr Hut, MünchenGoogle Scholar
  53. 53.
    Schröder V (1999) Herstellen van Öl-in-Wasser Emulsionen mit Microporösen Membranen. PhD thesis, Technische Hochschule Karlsruhe, GermanyGoogle Scholar
  54. 54.
    Nazir A, Schroën K, Boom R (2011) High-throughput premix membrane emulsification using nickel sieves having straight-through pores. J Membr Sci 383:116–123CrossRefGoogle Scholar
  55. 55.
    Rosso M, Giesbers M, Arafat A, Schroën K, Zuilhof H (2009) Covalently attached organic monolayers on SiC and SixN4 surfaces: formation using UV light at room temperature. Langmuir 25:2172–2180CrossRefGoogle Scholar
  56. 56.
    Arafat A, Giesbers M, Rosso M, Sudhölter EJR, Schroën CGPH, White RG (2007) Covalent biofunctionalization of silicon nitride surfaces. Langmuir 23:6233–6244CrossRefGoogle Scholar
  57. 57.
    Bahtz J, Gunes DZ, Hughes E, Pokorny L, Riesch F, Syrbe A, Fischer P, Windhab EJ (2015) Decoupling of mass transport mechanisms in the stagewise swelling of multiple emulsions. Langmuir 31:5265–5273CrossRefGoogle Scholar
  58. 58.
    Kaspar P, Holzapfel S, Windhab EJ, Jäckel H (2011) Self-aligned mask renewal for anisotropically etched circular micro- and nanostructures. J Micromech Microeng 21:115003CrossRefGoogle Scholar
  59. 59.
    Holzapfel S, Rondeau E, Mühlich P, Windhab EJ (2013) Drop detachment from a micro-engineered membrane surface in a dynamic membrane emulsification process. Chem EngTechnol 36:1785–1794Google Scholar
  60. 60.
    Feigl K, Tanner FX, Holzapfel S, Windhab EJ (2014) Effect of flow type, channel height, and viscosity on drop production from micro-pores. Chem Eng Sci 116:72–382CrossRefGoogle Scholar
  61. 61.
    Akkermans C, van der Goot AJ, Venema P, van der Linden E, Boom RM (2007) Formation of fibrillar whey protein aggregates: influence of heat and shear treatment, and resulting rheology. Food Hydrocolloids 22:1315–1325CrossRefGoogle Scholar
  62. 62.
    Rossier Miranda FJ, Schroën CGPH, Boom RM (2010) Mechanical characterization and pH response of fibril-reinforced microcapsules prepared by layer-by-layer adsorption. Langmuir 26:19106–19113CrossRefGoogle Scholar
  63. 63.
    Sagis LMC, de Ruiter R, Rossier Miranda FJ, de Ruiter J, Schroën K, van Aelst AC, Kieft H, Boom R, van der Linden E (2008) Polymer microcapsules with a fiber-reinforced nanocomposite shell. Langmuir 24:1608–1612CrossRefGoogle Scholar
  64. 64.
    Beddington, J. Food, energy, water and climate change-a perfect storm of global events? 2010.,
  65. 65.
    Hubbard LJ, Hubbard C (2013) Food security in the United Kingdom: external supply risks. Food Policy 43:142–147CrossRefGoogle Scholar
  66. 66.
    DEFRA (2010). Food 2030, 2010, 80 pgs.
  67. 67.
    Pimentel D, Williamson S, Alexander CE, Gonzalez-Pagan O, Kontak C, Mulkey SE (2008) Reducing energy inputs in the US food system. Hum Ecol 36:459–471CrossRefGoogle Scholar
  68. 68.
    DEFRA (2011). Food statistics pocketbook, 2011, 79 p.
  69. 69.
    WRAP (2011). Handy facts and figures on food waste;
  70. 70.
    AEA Energy and Environment (2007). Resource efficiency in food chains. Report to Defra, EDO5226, 100 pGoogle Scholar
  71. 71.
    WRAP (2013). Water use in the food and drink industry; available from
  72. 72.
    Tassou SA, De-Lille G, Ge YT (2009) Food transport refrigeration—approaches to reduce energy consumption and environmental impacts of road transport. Appl Therm Eng 29:1467–1477CrossRefGoogle Scholar
  73. 73.
    Tassou SA, Ge YT, Hadawey A, Marriott D (2011) Energy consumption and conservation in food retailing. Appl Therm Eng 31:147–156CrossRefGoogle Scholar
  74. 74.
    Bernstad A, la Cour Jansen J (2012) Review of comparative LCAs of food waste management systems—current status and potential improvements. Waste Managem 32:2439–2455CrossRefGoogle Scholar
  75. 75.
    Mirabella N, Castellani V, Sala S (2013) Current options for the valorization of food processing waste: a review. J Cleaner Prod 65:28–41CrossRefGoogle Scholar
  76. 76.
    Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94CrossRefGoogle Scholar
  77. 77.
    Kosseva M, Webb C (2013) Food industry wastes: assessment and recuperation of commodities. Academic Press, London 338p Google Scholar
  78. 78.
    Hall GM, Howe J (2012) Energy from waste and the food processing industry. Process Safety Environ Prot 90:203–221CrossRefGoogle Scholar
  79. 79.
    Quested TE, Marsh E, Stunell D, Parry AD (2013) Spaghetti soup: the complex world of food waste behaviours. Resour Conserv Recycl 79:43–51CrossRefGoogle Scholar
  80. 80.
    Manzano-Agugliaro F, Alcayde A, Montoya FG, Zapata-Sierra A, Gil C (2013) Scientific production of renewable energies worldwide: an overview. Renew Sustain Energy Rev 18:134–143CrossRefGoogle Scholar
  81. 81.
    Bazilian M, Rogner H, Howells M, Hermann S, Arent D, Gielen D, Steduto P, Mueller A, Komor P, Tol SSJ, Yumkella KH (2011) Considering the energy, water and food nexus: towards an integrated modelling approach. Energy Policy 39:7896–7906CrossRefGoogle Scholar
  82. 82.
    Egilmez G, Murat Kucukvar M, Tatari O, Bhutta MKS (2014) Supply chain sustainability assessment of the U.S. food manufacturing sectors: a life cycle-based frontier approach. Resour Conserv Recycl 82:8–20CrossRefGoogle Scholar
  83. 83.
    Calderón LA, Iglesias L, Laca A, Herrero M, Díaz M (2010) Assessment in the ready meal food industry. Resour Conserv Recycl 54:1196–1207CrossRefGoogle Scholar
  84. 84.
    Fryer PJ, Bakalis S (2012) Heat transfer in foods: ensuring safety and creating microstructure. J Heat Trans 134:031021CrossRefGoogle Scholar
  85. 85.
    Miri T, Tsoukalis A, Bakalis S, Pistikopoulos S, Rustem B, Fryer PJ (2008) Global optimisation of process conditions in batch sterilisation of food. J Food Eng 87:485–494CrossRefGoogle Scholar
  86. 86.
    Alonso AA, Arias-Méndez A, Balsa-Canto E, García MR, Molina JL, Vilas C, Villafín M (2013) Real time optimisation for quality control of batch thermal sterilization of prepackaged foods. Food Control 32:392–403CrossRefGoogle Scholar
  87. 87.
    Wu H, Tassou SA, Karayiannis TG, Jouhara H (2013) Analysis and simulation of continuous food frying processes. Appl Therm Eng 53:332–339CrossRefGoogle Scholar
  88. 88.
    Wu H, Tassou SA, Karayiannis TG (2013) Modelling and control approaches for energy reduction in continuous frying systems. Appl Energy 112:939–948CrossRefGoogle Scholar
  89. 89.
    Aguiar HF, Gut JAW (2014) Continuous HTST pasteurization of liquid foods with plate heat exchangers: mathematical modeling and experimental validation using a time–temperature integrator. J Food Eng 123:78–86CrossRefGoogle Scholar
  90. 90.
    Mehauden K, Bakalis S, Cox PW, Fryer PJ, Simmons MJH (2008) Use of time temperature integrators for determining thermal processing efficiency in agitated vessels. Innov Food Sci Emerg Technol 9:385–395CrossRefGoogle Scholar
  91. 91.
    Cullen PJ, Tiwari B, Valdramedis V (2011) Novel thermal and non-thermal technologies for fluid foods. Academic Press, AmsterdamGoogle Scholar
  92. 92.
    Knoerzer K, Juliano P, Gladman S, Versteeg C, Fryer PJ (2007) A computational model for temperature and sterility distributions in a pilot-scale high-pressure high-temperature process. AIChE J 53:2996–3010CrossRefGoogle Scholar
  93. 93.
    Moritz J, Balasa A, Jaeger H, Meneses N, Knorr D (2012) Investigating the potential of polyphenol oxidase as a temperature-time indicator pulsed electric field. Food Control 26:1–5CrossRefGoogle Scholar
  94. 94.
    Sevenich R, Bark F, Crews C, Anderson W, Pye C, Riddellova K, Hradecky J, Moravcova E, Reineke K, Knorr D (2013) Effect of high pressure thermal sterilisation on the formation of food processing contaminants. Innov Food Sci Emerg Technol 20:42–50CrossRefGoogle Scholar
  95. 95.
    Pardo G, Zufía J (2012) Life cycle assessment of food preservation technologies. J Cleaner Prod 28:198–207CrossRefGoogle Scholar
  96. 96.
    Goode KR, Robbins PT, Fryer PJ (2013) Fouling and cleaning studies in the food and beverage industry classified by cleaning type. Compr Rev Food Sci Food Saf 12:121–143CrossRefGoogle Scholar
  97. 97.
    Fryer PJ, Asteriadou K (2009) A prototype cleaning map. A classification of industrial cleaning processes. Trends Food Sci Technol 20:255–262CrossRefGoogle Scholar
  98. 98.
    Kananeh AB, Scharnbeck E, Kuck U, Rabiger N (2010) Reduction of milk fouling inside gasketed plate heat exchanger using nano-coatings. Food Bioprod Process 88:349–356CrossRefGoogle Scholar
  99. 99.
    Barish JA, Goddard JM (2014) Stability of non-fouling stainless steel heat exchanger plates against commercial cleaning agents. J Food Eng 124:143–151CrossRefGoogle Scholar
  100. 100.
    Quarini G, Aislie E, Ash D, Leiper A, McBryde D, Herbert M, Deans T (2013) Transient thermal performance of ice slurries pumped through pipes. Appl Therm Eng 50:743–748CrossRefGoogle Scholar
  101. 101.
    Palabiyik I, Olunloyo B, Fryer PJ, Robbins PT (2014) Flow regimes in the emptying of pipes filled with a Herschel–Bulkley fluid, online. Chem Eng Res Design 92:2201–2212CrossRefGoogle Scholar
  102. 102.
    Mundler P, Rumpus L (2012) The energy efficiency of local food systems: a comparison between different modes of distribution. Food Policy 37:609–615CrossRefGoogle Scholar
  103. 103.
    van der Sman RGM, Vergeldt FJ, Van As H, van Dalen G, Voda A, van Duynhoven JPM (2013) Multiphysics pore-scale model for the rehydration of porous foods. Innov Food Sci Emerg Technol 24:69–79CrossRefGoogle Scholar
  104. 104.
    Niamnuy C, Devahastin S, Soponronnarit S (2014) Some recent advances in microstructural modification and monitoring of foods during drying: a review. J Food Eng 123:148–156CrossRefGoogle Scholar
  105. 105.
    Wegrzyn TF, Golding M, Archer RH (2012) Food layered manufacture: a new process for constructing solid foods. Trends Food Sci Technol 27:66–72CrossRefGoogle Scholar
  106. 106.
    Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050—the 2012 revision. FAO, Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  107. 107.
    Myers N, Kent J (2003) New consumers: the influence of affluence on the environment. Proc Natl Acad Sci 100:4963–4968CrossRefGoogle Scholar
  108. 108.
    Aiking H (2011) Future protein supply. Trends Food Sci Technol 22:112–120CrossRefGoogle Scholar
  109. 109.
    Peighambardoust SH, Hamer RJ, Boom RM, van der Goot AJ (2008) Migration of gluten under shear flow as a novel mechanism for separating wheat flour into gluten and starch. J Cereal Sci 48:327–338CrossRefGoogle Scholar
  110. 110.
    van der Zalm EEJ, van der Goot AJ, Boom RM (2011) Quality of shear fractionated wheat gluten—comparison to commercial vital wheat gluten. J Cereal Sci 53:154–159CrossRefGoogle Scholar
  111. 111.
    Lubbersen YS, Schutyser MAI, Boom RM (2012) Suspension separation with deterministic ratchets at moderate Reynolds numbers. Chem Eng Sci 73:314–320CrossRefGoogle Scholar
  112. 112.
    Lubbersen YS, Dijkshoorn JP, Schutyser MAI, Boom RM (2013) Visualization of inertial flow in deterministic ratchets. Sep Purif Technol 109:33–39CrossRefGoogle Scholar
  113. 113.
    Nirschl H, Keller K (2014) Upscaling of Bio-Nano-Processes; Selective Bioseparation by Magnetic Particles. Springer, BerlinGoogle Scholar
  114. 114.
    Rondeau E, Windhab EJ (2014) Vesicles and composite particles by rotating membrane pore extrusion. In Upscaling of bio-nano-processes; selective bioseparation by magnetic particles. Springer-Verlag, Berlin, Heidelberg, ISDN 978-3-662-43898-5Google Scholar
  115. 115.
    Malik VS, Schulze MB, Hu FB (2006) Intake of sugar-sweetened beverages and weight gain: a systematic review. Am J Clin Nutr 84:274–288Google Scholar
  116. 116.
    Rosenheck R (2008) Fast food consumption and increased caloric intake: a systematic review of a trajectory towards weight gain and obesity risk. Obes Rev 9:535–547CrossRefGoogle Scholar
  117. 117.
    Branca F, Kruse H (2008) WHO European action plan for food and nutrition policy 2007–2012. WHO World Health Organisation, DenmarkGoogle Scholar
  118. 118.
    Jacobs DR, Gross MD, Tapsell LC (2009) Food synergy: an operational concept for understanding nutrition. Am J Clin Nutr 89:1543S–1548SCrossRefGoogle Scholar
  119. 119.
    Schutyser MAI, van der Goot AJ (2011) The potential of dry fractionation for sustainable plant protein production. Trends Food Sci Technol 22:154–164CrossRefGoogle Scholar
  120. 120.
    Hemery Y, Rouau X, Lullien-Pellerin V, Barron C, Abecassis J (2007) Dry processes to develop wheat fractions and products with enhanced nutritional quality. J Cereal Sci 46:327–347CrossRefGoogle Scholar
  121. 121.
    Pelgrom PJM, Vissers AM, Boom RM, Schutyser MAI (2013) Dry fractionation for production of functional pea protein concentrates. Food Res Int 53:232–239CrossRefGoogle Scholar
  122. 122.
    Pelgrom PJM, Schutyser, MAI, Boom RM (2012) Thermomechanical morphology of peas and its relation to fracture behaviour. Food Bioprocess Technol 6:3317–3325CrossRefGoogle Scholar
  123. 123.
    Royal.Society (2012). Royal Society names refrigeration most significant invention in the history of food and drink.
  124. 124.
    Aguilera JM (2006) Food product engineering: building the right structures. J Sci Food Agric 86:1147–1155CrossRefGoogle Scholar
  125. 125.
    Karel M (1995) The history and future of food engineering. In: Fito P, Ortega-Rodriguez E, Barbosa-Canovas GV (eds) Food engineering 2000. Springer, New York, p 416Google Scholar
  126. 126.
    Ward RE, Watzke HJ, Jimenez-Flores R, German JB (2004) Bioguided processing: a paradigm change in food production. Food Technol 58(5):44–48Google Scholar
  127. 127.
    ETP (2007). European Technology Platform on Food for Life. Strategic Research Agenda 2007-2020
  128. 128.
    IChemE (2013). Institution of Chemical Engineers.
  129. 129.
    Bauer BA, Knorr D (2005) The impact of pressure, temperature and treatment time on starches: pressure-induced starch gelatinisation as pressure time temperature indicator for high hydrostatic pressure processing. J Food Eng 68:329–334CrossRefGoogle Scholar
  130. 130.
    Baier D (2014) Impact of high pressure–low temperature treatment on Micellar Caseins and Whey proteins. Berlin, Technische Univesität, Berlin, ThesisGoogle Scholar
  131. 131.
    Tintchev F (2013) High hydrostatic pressure-temperature modeling of Frankfurters batters-mechanisms, salt reduction, applications. Thesis, Berlin, Technische Universität Berlin, 167Google Scholar
  132. 132.
    De Roeck A, Sila DN, Duvetter T, Van Loey A, Hendrickx M (2008) Effect of high pressure/high temperature processing on cell wall pectic substances in relation to firmness of carrot tissue. Food Chem 107:1225–1235CrossRefGoogle Scholar
  133. 133.
    Balasa A, Janositz A, Knorr D (2011) Electric field stress on plant systems. In: Heldman DR, Hoover DG, Wheeler MB (eds) Encyclopedia of biotechnology in agriculture and food. CRC Press, Boca Raton, FLGoogle Scholar
  134. 134.
    Jaeger H, Schulz M, Lu P, Knorr D (2012) Adjustment of milling, mash electroporation and pressing for the development of a PEF assisted juice production in industrial scale. Innov Food Sci Emerg Technol 14:46–60CrossRefGoogle Scholar
  135. 135.
    Schössler K, Thomas T, Knorr D (2012) Modification of cell structure and mass transfer in potato tissue by contact ultrasound. Food Res Int 49:425–431CrossRefGoogle Scholar
  136. 136.
    Volkert M, Ananta E, Luscher C, Knorr D (2008) Effect of air freezing, spray freezing, and pressure shift freezing on membrane integrity and viability of Lactobacillus rhamnosus GG. J Food Eng 87:532–540CrossRefGoogle Scholar
  137. 137.
    Ananta E, Knorr D (2004) Evidence on the role of protein biosynthesis in the induction of heat tolerance of Lactobacillus rhamnosus GG by pressure pre-treatment. Int J Food Microbiol 96:307–313CrossRefGoogle Scholar
  138. 138.
    Ferrua MJ, Singh RP (2010) Modeling the fluid dynamics in a human stomach to gain insight of food digestion. J Food Sci 75:R151–R162CrossRefGoogle Scholar
  139. 139.
    Rauh C, Singh J, Nagel M, Delgado A (2012) Objective analysis and prediction of texture perception of yoghurt by hybrid neuro-numerical methods. Int Dairy. 26:2–14CrossRefGoogle Scholar
  140. 140.
    Knorr D (1983) Sustainable food systems. AVI Publishing Co, Westport CTGoogle Scholar
  141. 141.
    Scheunemann M (2013) Influence of baking plate materials on sensory properties of pizza crust—experimental and numerical approaches. Thesis, Berlin, Technische Universität BerlinGoogle Scholar
  142. 142.
    Schmäche R (2013) Simulation of heat transfer processes during the baking process of pizza crust—importance of contact surface materials on crust formation. Thesis, Berlin, Technische Universität BerlinGoogle Scholar
  143. 143.
    Janositz A (2005) Auswirkung von Hochspannungsimpulsen auf das Schnittverhalten von Kartoffeln (Solanum tuberosum). Thesis, Berlin, Technische Universität BerlinGoogle Scholar
  144. 144.
    ETP (2008). The European Bioeconomy in 2030: delivering sustainable growth by addressingGoogle Scholar
  145. 145.
    Rumpold BA, Schluter OK (2013) Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res 57:802–823CrossRefGoogle Scholar
  146. 146.
    Van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P (2013) Edible insects—future prospects for food and feed security. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  147. 147.
    ETP (2012) European technology platform food for life. Strategic Research and Innovation Agenda.
  148. 148.
    Schiefer G, Deiters J (2013) Transparency in the Food Chain. BonnGoogle Scholar
  149. 149.
    COST (2014) Electroporation based technologies.
  150. 150.
    Khoo CS, Knorr D (2014) Grand challenges in nutrition and food science technology. Frontiers in Nutrition 1:4CrossRefGoogle Scholar
  151. 151.
    Frohling A, Baier M, Ehlbeck J, Knorr D, Schluter O (2012) Atmospheric pressure plasma treatment of Listeria innocua and Escherichia coli at polysaccharide surfaces: inactivation kinetics and flow cytometric characterization. Innov Food Sci Emerg Technol 13:142–150CrossRefGoogle Scholar
  152. 152.
    Moskowitz H, Saguy IS, Straus T (2009) An integrated approach to new food product development. CRC Press, Boca RatonCrossRefGoogle Scholar
  153. 153.
    Foresight (2011) The future of food and farming: challenges and choices for global sustainability, Final Project Report. The Government Office for Science, LondonGoogle Scholar
  154. 154.
    Floros JD, Newsome R, Fisher W, Barbosa-Canovas GV, Chen HD, Dunne CP, German JB, Hall RL, Heldman DR, Karwe MV, Knabel SJ, Labuza TP, Lund DB, Newell-McGloughlin M, Robinson JL, Sebranek JG, Shewfelt RL, Tracy WF, Weaver CM, Ziegler GR (2010) Feeding the world today and tomorrow: the importance of food science and technology. An IFT scientific review. Compr Rev Food Sci Food Saf 9(5):572–599CrossRefGoogle Scholar
  155. 155.
    Saguy IS, Singh RP, Johnson T, Fryer PJ, Sastry SK (2013) Challenges facing food engineering. J Food Eng 119:332–342CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yrjö H. Roos
    • 1
    Email author
  • Peter J. Fryer
    • 2
  • Dietrich Knorr
    • 3
  • Heike P. Schuchmann
    • 4
  • Karin Schroën
    • 5
  • Maarten A. I. Schutyser
    • 5
  • Gilles Trystram
    • 6
  • Erich J. Windhab
    • 7
  1. 1.School of Food and Nutritional SciencesUniversity College CorkCorkIreland
  2. 2.School of Chemical EngineeringThe University of BirminghamEdgbaston, BirminghamUK
  3. 3.Fachgebiet Lebensmittelbiotechnologie und –prozesstechnik, Institut für Lebensmitteltechnologie und –chemieTechnische Universität BerlinBerlinGermany
  4. 4.Karlsruhe Institute of TechnologyKarlsruheGermany
  5. 5.Food Process EngineeringWU Agrotechnology and Food SciencesWageningenThe Netherlands
  6. 6.AgroParisTechParisFrance
  7. 7.Swiss Federal Institute of Technology Zürich (ETH)ZurichSwitzerland

Personalised recommendations