Skip to main content

Advertisement

Log in

Food Engineering at Multiple Scales: Case Studies, Challenges and the Future—A European Perspective

Food Engineering Reviews Aims and scope Submit manuscript

Abstract

A selection of Food Engineering research including food structure engineering, novel emulsification processes, liquid and dry fractionation, Food Engineering challenges and research with comments on European Food Engineering education is covered. Food structure engineering is discussed by using structure formation in freezing and dehydration processes as examples for mixing of water as powder and encapsulation and protection of sensitive active components. Furthermore, a strength parameter is defined for the quantification of material properties in dehydration and storage. Methods to produce uniform emulsion droplets in membrane emulsification are presented as well as the use of whey protein fibrils in layer-by-layer interface engineering for encapsulates. Emulsion particles may also be produced to act as multiple reactors for food applications. Future Food Engineering must provide solutions for sustainable food systems and provide technologies allowing energy and water efficiency as well as waste recycling. Dry fractionation provides a novel solution for an energy and water saving separation process applicable to protein purification. Magnetic separation of particles advances protein recovery from wastewater streams. Food Engineering research is moving toward manufacturing of tailor-made foods, sustainable use of resources and research at disciplinary interfaces. Modern food engineers contribute to innovations in food processing methods and utilization of structure–property relationships and reverse engineering principles for systematic use of information of consumer needs to process innovation. Food structure engineering, emulsion engineering, micro- and nanotechnologies, and sustainability of food processing are examples of significant areas of Food Engineering research and innovation. These areas will contribute to future Food Engineering and novel food processes to be adapted by the food industry, including process and product development to achieve improvements in public health and quality of life. Food Engineering skills and real industry problem solving as part of academic programs must show increasing visibility besides emphasized training in communication and other soft skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Heldman DR, Lund DB (2011) The beginning, current, and future of food engineering: a perspective. In: Aguilera JM, Barbosa-Canovas GV, Simpson R, Welti-Chanes J, Bermudez-Aguirre D (eds) Food engineering interfaces. Springer, New York, pp 3–18

    Google Scholar 

  2. Brody AL, Labuza TP (2014) MIT food technology: the major driver for food technology for 50 years. J Food Sci 79(7):4–5

    Google Scholar 

  3. Knorr D, Jaeger H, Reineje K, Schoessler K, Froehling A, Schlueter O (2013) Emerging technologies for targeted food processing. In: Yanniotis S, Taoukis P, Stoforos NG, Karathanos VT (eds) Advances in food process engineering research and applications. Springer, New York, pp 341–374

    Chapter  Google Scholar 

  4. Roos YH (2012) Materials science of freezing and frozen foods. In: Bhandari B, Roos YH (eds) Food materials science and engineering. Wiley, Chichester UK, pp 373–386

    Chapter  Google Scholar 

  5. Slade L, Levine H (1991) Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit Rev Food Sci Nutr 30:115–360

    Article  CAS  Google Scholar 

  6. Roos YH (2010) Glass transition temperature and its relevance in food processing. Annu Rev Food Sci Technol 1:469–496

    Article  CAS  Google Scholar 

  7. van Dijke KC, de Ruiter R, Schroën K, Boom RM (2010) The mechanism of droplet formation in microfluidic EDGE systems. Soft Matter 6:321–330

    Article  Google Scholar 

  8. van Dijke KC, Veldhuis G, Schroën CGPH, Boom RM (2010) Simultaneous formation of many droplets in a single microfluidic droplet formation unit. AIChE J 56:833–836

    Google Scholar 

  9. van Dinther AMC, Schroën CGPH, Boom RM (2011) High-flux membrane separation using fluid skimming dominated convective fluid flow. J Membr Sci 371(1–2):20–27

    Article  CAS  Google Scholar 

  10. van Dinther AMC, Schroën CGPH, Boom RM (2013) Particle migration leads to deposition-free fractionation. J Membr Sci 440:58–66

    Article  CAS  Google Scholar 

  11. Windhab EJ (2009) Tailored food structure processing for personalized nutrition. In: P. Fisher P, Pollard, M, Windhab EJ (eds) Proceedings of the 5th International Symposium on Food Rheology and Structure—ISFRS 2009, June 15–18, Zürich, Switzerland, pp 52–62

  12. Mezzenga R, Schurtenberger P, Burbidge A, Michel M (2005) Understanding foods as soft materials. Nat Mater 4:729–740

    Article  CAS  Google Scholar 

  13. Sanguansri P, Augustin MA (2006) Nanoscale materials development—a food industry perspective. Trends Food Sci Technol 17:547–556

    Article  CAS  Google Scholar 

  14. Van Buggenhout S, Alminger M, Lemmens L, Colle I, Knockaert G, Moelants K, Van Loey A, Hendrickx M (2010) In vitro approaches to estimate the effect of food processing on carotenoid bioavailability need through understanding of process induced microstructural changes. Trends Food Sci Technol 21:607–618

    Article  CAS  Google Scholar 

  15. Sagalowicz L, Leser ME (2010) Delivery systems for liquid food products. Curr Opin Colloid Interface Sci 15:61–72

    Article  CAS  Google Scholar 

  16. Norton I, Fryer P, Moore S (2006) Product/process integration in food manufacture: engineering sustained health. AIChE J 52:1632–1640

    Article  CAS  Google Scholar 

  17. McClements DJ, Decker EA, Park Y, Weiss J (2008) Designing food structure to control stability, digestion, release and adsorption of lipophilic food components. Food Biophys 3:219–228

    Article  Google Scholar 

  18. Singh H, Sarkar A (2011) Behaviour of protein-stabilised emulsions under various physiological conditions. Adv Colloid Interface Sci 165:47–57

    Article  CAS  Google Scholar 

  19. Benshitrit RC, Shani Levi S, Levi Tal S, Shimoni E, Lesmes U (2012) Development of oral food-grade delivery systems: current knowledge and future challenges. Food Funct 3:10–21

    Article  CAS  Google Scholar 

  20. This H (2009) Molecular gastronomy, a scientific look at cooking. Acc Chem Res 42(5):575–583

    Article  CAS  Google Scholar 

  21. Roos YH (1995) Phase transitions in foods. Academic Press, San Diego

    Google Scholar 

  22. Harnkarnsujarit N, Charoenrein S, Roos YH (2012) Microstructure formation of maltodextrin and sugar matrices in freeze-dried systems. Carbohydr Polym 88:734–742

    Article  CAS  Google Scholar 

  23. Roos Y, Karel, M (1991) Applying state diagrams to food processing and development. Food Technol 45(12):66, 68–71, 107

  24. Buera MP, Roos Y, Levine H, Slade L, Corti HR, Reid DS, Auffret T, Angell CA (2011) State diagrams for improving processing and storage of foods, biological materials, and pharmaceuticals (IUPAC Technical Report). Pure Appl Chem 83:1567–1617

    Article  CAS  Google Scholar 

  25. Slettengren K, Heunemann P, Knuchel O, Windhab EJ (2015) Mixing quality of powder–liquid mixtures studied by near infrared spectroscopy and colorimetry. Powder Technol 278:130–137

    Article  CAS  Google Scholar 

  26. Windhab EJ (1999) New developments in crystallization processing. J Therm Anal Calorim 57:171–180

    Article  CAS  Google Scholar 

  27. Köhler K, Schuchmann HP (2012) Emulgiertechnik, 3rd edn. Behr’s Verlag, Hamburg

    Google Scholar 

  28. Landfester K (2003) Miniemulsions for nanoparticle synthesis. Top Curr Chem 227:75–123

    Article  CAS  Google Scholar 

  29. Rumpf R (1967) Über die Eigenschaften von Nutzstäuben. Staub Reinhalt Luft 27(1):3–13

    CAS  Google Scholar 

  30. Krekel J, Polke R (1992) Qualitätssicherung bei der Verfahrensentwicklung. Chem Ing Tech 64:528–535

    Article  Google Scholar 

  31. Schuchmann HP, Hecht LL, Gedrat M, Köhler K (2012) High-pressure homogenization for the production of emulsions. In: Eggers R (ed) Industrial high pressure applications. Processes, equipment and safety. Wiley VCH Verlag, Weinheim, pp 97–118

    Chapter  Google Scholar 

  32. Emin MA, Köhler K, Schlender M, Schuchmann HP (2011) Characterization of mixing in food extrusion and emulsification processes by using CFD. In: Nagel WE, Kröner DB, Resch MM (eds) High performance computing in science and engineering ‘10. Springer, Heidelberg, pp 443–462

    Google Scholar 

  33. Schuchmann HP, Köhler K, Emin MA, Schubert H (2013) Food process engineering research and innovation in a fast changing world: paradigms/case studies. In: Yanniotis S, Taoukis P, Stoforos NG, Karathanos VT (eds) Advances in food process engineering research and applications. Springer, New York, pp 41–59

    Chapter  Google Scholar 

  34. Köhler K, Schuchmann HP (2012) Simultanes Emulgieren und Mischen. Chem Ing Tech 84:1538–1544

    Article  CAS  Google Scholar 

  35. Grace HP (1982) Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem Eng Commun 14:225–277

    Article  CAS  Google Scholar 

  36. Walstra P (1983) Formation of emulsions. In: Becher P (ed) Encyclopedia of emulsion technology, vol 1. Marcel Dekker, New York

    Google Scholar 

  37. Bentley BJ, Leal LG (1986) An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows. J Fluid Mech 176:241–283

    Article  Google Scholar 

  38. Kissling K, Schütz S, Piesche M (2009) Numerical investigation of the flow field and the mechanisms of droplet deformation and break-up in a high-pressure homogenizer. Proceedings 8th World Congress of Chemical Engineering, Montreal, Canada

  39. Frank K, Schuchmann HP (2011) Mikrostrukturierte, multidisperse Hüllkapseln als Träger bioaktiver Substanzen: Untersuchungen zum Einfluss von molekularen Wechselwirkungen und Diffusionsbarrieren auf die Stabilität und Freisetzung von Inhaltsstoffen aus der Heidelbeere (AiF 15612 N), Forschungskreis der Ernährungsindustrie (FEI), 47–61

  40. Frank K, Schuchmann HP (2012) Stability of anthocyanin-rich W/O/W-emulsions designed for intestinal release in gastrointestinal environment. J Food Sci 77:N50–N57

    Article  CAS  Google Scholar 

  41. Schuch A, Deiters P, Henne J, Köhler K, Schuchmann HP (2013) Production of W/O/W (water-in-oil-in-water) multiple emulsions: droplet breakup and release of water. J Colloid Interface Sci 402:157–164

    Article  CAS  Google Scholar 

  42. Bernewitz R, Dalitz F, Köhler K, Schuchmann HP, Guthausen G (2013) Characterisation of multiple emulsions by NMR spectroscopy and diffusometry. Microporous Mesoporous Mater 178:69–73

    Article  CAS  Google Scholar 

  43. Frank K (2012) Formulieren von Anthocyanen in Doppelemulsionen. Verlag Dr, Hut, München

    Google Scholar 

  44. Guan X, Hailu K, Guthausen G, Wolf F, Bernewitz R, Schuchmann HP (2010) PFG-NMR on W1/O/W2-emulsions: evidence for molecular exchange between water phases. Eur J Lipid Sci Technol 112:828–837

    Article  CAS  Google Scholar 

  45. Gedrat M, Mages-Sauter C, Schuchmann HP (2011) Precipitation of nanoparticles in submicron emulsions induced by droplet coalescence. Chem Eng Process Process Intensif 50:220–225

    Article  CAS  Google Scholar 

  46. Winkelmann M, Schuchmann HP (2011) Precipitation of metal oxide nanoparticles using a miniemulsion technique. Particuology 9:502–505

    Article  CAS  Google Scholar 

  47. Winkelmann M, Grimm EM, Comunian T, Freudig B, Zhou Y, Gerlinger W, Sachweh B, Schuchmann HP (2013) Controlled droplet coalescence in miniemulsions to synthesize zinc oxide nanoparticles by precipitation. Chem Eng Sci 92:126–133

    Article  CAS  Google Scholar 

  48. Winkelmann M (2013) Über den Einfluss von Stofftransportvorgängen auf die Partikelbildung in Miniemulsionstropfen. Verlag Dr. Hut, München

    Google Scholar 

  49. Hecht LL, Winkelmann M, Wagner C, Landfester K, Gerlinger W, Sachweh B, Schuchmann HP (2012) Miniemulsions for the production of nanostructured particles. Chem Eng Technol 35:1670–1676

    Article  CAS  Google Scholar 

  50. Hecht LL, Merkel T, Schoth A, Köhler K, Wagner C, Muñoz-Espí R, Landfester K, Schuchmann HP (2013) Emulsification of particle loaded droplets with regard to miniemulsion polymerization. Chem Eng J 229:206–216

    Article  CAS  Google Scholar 

  51. Hecht LL, Wagner C, Özcan Ö, Eisenbart F, Köhler K, Landfester K, Schuchmann HP (2012) Influence of the surfactant concentration on miniemulsion polymerization for the preparation of hybrid nanoparticles. Macromol Chem Phys 213:2165–2173

    Article  CAS  Google Scholar 

  52. Hecht LL (2013) Herstellung nanostrukturierter Partikel mittels Miniemulsionspolymerisation. Verlag Dr Hut, München

    Google Scholar 

  53. Schröder V (1999) Herstellen van Öl-in-Wasser Emulsionen mit Microporösen Membranen. PhD thesis, Technische Hochschule Karlsruhe, Germany

  54. Nazir A, Schroën K, Boom R (2011) High-throughput premix membrane emulsification using nickel sieves having straight-through pores. J Membr Sci 383:116–123

    Article  CAS  Google Scholar 

  55. Rosso M, Giesbers M, Arafat A, Schroën K, Zuilhof H (2009) Covalently attached organic monolayers on SiC and SixN4 surfaces: formation using UV light at room temperature. Langmuir 25:2172–2180

    Article  CAS  Google Scholar 

  56. Arafat A, Giesbers M, Rosso M, Sudhölter EJR, Schroën CGPH, White RG (2007) Covalent biofunctionalization of silicon nitride surfaces. Langmuir 23:6233–6244

    Article  CAS  Google Scholar 

  57. Bahtz J, Gunes DZ, Hughes E, Pokorny L, Riesch F, Syrbe A, Fischer P, Windhab EJ (2015) Decoupling of mass transport mechanisms in the stagewise swelling of multiple emulsions. Langmuir 31:5265–5273

    Article  CAS  Google Scholar 

  58. Kaspar P, Holzapfel S, Windhab EJ, Jäckel H (2011) Self-aligned mask renewal for anisotropically etched circular micro- and nanostructures. J Micromech Microeng 21:115003

    Article  CAS  Google Scholar 

  59. Holzapfel S, Rondeau E, Mühlich P, Windhab EJ (2013) Drop detachment from a micro-engineered membrane surface in a dynamic membrane emulsification process. Chem EngTechnol 36:1785–1794

    CAS  Google Scholar 

  60. Feigl K, Tanner FX, Holzapfel S, Windhab EJ (2014) Effect of flow type, channel height, and viscosity on drop production from micro-pores. Chem Eng Sci 116:72–382

    Article  CAS  Google Scholar 

  61. Akkermans C, van der Goot AJ, Venema P, van der Linden E, Boom RM (2007) Formation of fibrillar whey protein aggregates: influence of heat and shear treatment, and resulting rheology. Food Hydrocolloids 22:1315–1325

    Article  CAS  Google Scholar 

  62. Rossier Miranda FJ, Schroën CGPH, Boom RM (2010) Mechanical characterization and pH response of fibril-reinforced microcapsules prepared by layer-by-layer adsorption. Langmuir 26:19106–19113

    Article  CAS  Google Scholar 

  63. Sagis LMC, de Ruiter R, Rossier Miranda FJ, de Ruiter J, Schroën K, van Aelst AC, Kieft H, Boom R, van der Linden E (2008) Polymer microcapsules with a fiber-reinforced nanocomposite shell. Langmuir 24:1608–1612

    Article  CAS  Google Scholar 

  64. Beddington, J. Food, energy, water and climate change-a perfect storm of global events? 2010. http://webarchive.nationalarchives.gov.uk, http://www.bis.gov.uk/goscience

  65. Hubbard LJ, Hubbard C (2013) Food security in the United Kingdom: external supply risks. Food Policy 43:142–147

    Article  Google Scholar 

  66. DEFRA (2010). Food 2030, 2010, 80 pgs. http://sd.defra.gov.uk/2010/01/food-2030/

  67. Pimentel D, Williamson S, Alexander CE, Gonzalez-Pagan O, Kontak C, Mulkey SE (2008) Reducing energy inputs in the US food system. Hum Ecol 36:459–471

    Article  Google Scholar 

  68. DEFRA (2011). Food statistics pocketbook, 2011, 79 p. http://www.defra.gov.uk/statistics/foodfarm/food/

  69. WRAP (2011). Handy facts and figures on food waste; http://www.wrap.org.uk/category/sector

  70. AEA Energy and Environment (2007). Resource efficiency in food chains. Report to Defra, EDO5226, 100 p

  71. WRAP (2013). Water use in the food and drink industry; available from http://www.wrap.org.uk/

  72. Tassou SA, De-Lille G, Ge YT (2009) Food transport refrigeration—approaches to reduce energy consumption and environmental impacts of road transport. Appl Therm Eng 29:1467–1477

    Article  CAS  Google Scholar 

  73. Tassou SA, Ge YT, Hadawey A, Marriott D (2011) Energy consumption and conservation in food retailing. Appl Therm Eng 31:147–156

    Article  CAS  Google Scholar 

  74. Bernstad A, la Cour Jansen J (2012) Review of comparative LCAs of food waste management systems—current status and potential improvements. Waste Managem 32:2439–2455

    Article  CAS  Google Scholar 

  75. Mirabella N, Castellani V, Sala S (2013) Current options for the valorization of food processing waste: a review. J Cleaner Prod 65:28–41

    Article  Google Scholar 

  76. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94

    Article  CAS  Google Scholar 

  77. Kosseva M, Webb C (2013) Food industry wastes: assessment and recuperation of commodities. Academic Press, London 338p

    Google Scholar 

  78. Hall GM, Howe J (2012) Energy from waste and the food processing industry. Process Safety Environ Prot 90:203–221

    Article  CAS  Google Scholar 

  79. Quested TE, Marsh E, Stunell D, Parry AD (2013) Spaghetti soup: the complex world of food waste behaviours. Resour Conserv Recycl 79:43–51

    Article  Google Scholar 

  80. Manzano-Agugliaro F, Alcayde A, Montoya FG, Zapata-Sierra A, Gil C (2013) Scientific production of renewable energies worldwide: an overview. Renew Sustain Energy Rev 18:134–143

    Article  Google Scholar 

  81. Bazilian M, Rogner H, Howells M, Hermann S, Arent D, Gielen D, Steduto P, Mueller A, Komor P, Tol SSJ, Yumkella KH (2011) Considering the energy, water and food nexus: towards an integrated modelling approach. Energy Policy 39:7896–7906

    Article  Google Scholar 

  82. Egilmez G, Murat Kucukvar M, Tatari O, Bhutta MKS (2014) Supply chain sustainability assessment of the U.S. food manufacturing sectors: a life cycle-based frontier approach. Resour Conserv Recycl 82:8–20

    Article  Google Scholar 

  83. Calderón LA, Iglesias L, Laca A, Herrero M, Díaz M (2010) Assessment in the ready meal food industry. Resour Conserv Recycl 54:1196–1207

    Article  Google Scholar 

  84. Fryer PJ, Bakalis S (2012) Heat transfer in foods: ensuring safety and creating microstructure. J Heat Trans 134:031021

    Article  Google Scholar 

  85. Miri T, Tsoukalis A, Bakalis S, Pistikopoulos S, Rustem B, Fryer PJ (2008) Global optimisation of process conditions in batch sterilisation of food. J Food Eng 87:485–494

    Article  Google Scholar 

  86. Alonso AA, Arias-Méndez A, Balsa-Canto E, García MR, Molina JL, Vilas C, Villafín M (2013) Real time optimisation for quality control of batch thermal sterilization of prepackaged foods. Food Control 32:392–403

    Article  Google Scholar 

  87. Wu H, Tassou SA, Karayiannis TG, Jouhara H (2013) Analysis and simulation of continuous food frying processes. Appl Therm Eng 53:332–339

    Article  Google Scholar 

  88. Wu H, Tassou SA, Karayiannis TG (2013) Modelling and control approaches for energy reduction in continuous frying systems. Appl Energy 112:939–948

    Article  Google Scholar 

  89. Aguiar HF, Gut JAW (2014) Continuous HTST pasteurization of liquid foods with plate heat exchangers: mathematical modeling and experimental validation using a time–temperature integrator. J Food Eng 123:78–86

    Article  Google Scholar 

  90. Mehauden K, Bakalis S, Cox PW, Fryer PJ, Simmons MJH (2008) Use of time temperature integrators for determining thermal processing efficiency in agitated vessels. Innov Food Sci Emerg Technol 9:385–395

    Article  Google Scholar 

  91. Cullen PJ, Tiwari B, Valdramedis V (2011) Novel thermal and non-thermal technologies for fluid foods. Academic Press, Amsterdam

    Google Scholar 

  92. Knoerzer K, Juliano P, Gladman S, Versteeg C, Fryer PJ (2007) A computational model for temperature and sterility distributions in a pilot-scale high-pressure high-temperature process. AIChE J 53:2996–3010

    Article  CAS  Google Scholar 

  93. Moritz J, Balasa A, Jaeger H, Meneses N, Knorr D (2012) Investigating the potential of polyphenol oxidase as a temperature-time indicator pulsed electric field. Food Control 26:1–5

    Article  CAS  Google Scholar 

  94. Sevenich R, Bark F, Crews C, Anderson W, Pye C, Riddellova K, Hradecky J, Moravcova E, Reineke K, Knorr D (2013) Effect of high pressure thermal sterilisation on the formation of food processing contaminants. Innov Food Sci Emerg Technol 20:42–50

    Article  CAS  Google Scholar 

  95. Pardo G, Zufía J (2012) Life cycle assessment of food preservation technologies. J Cleaner Prod 28:198–207

    Article  Google Scholar 

  96. Goode KR, Robbins PT, Fryer PJ (2013) Fouling and cleaning studies in the food and beverage industry classified by cleaning type. Compr Rev Food Sci Food Saf 12:121–143

    Article  Google Scholar 

  97. Fryer PJ, Asteriadou K (2009) A prototype cleaning map. A classification of industrial cleaning processes. Trends Food Sci Technol 20:255–262

    Article  CAS  Google Scholar 

  98. Kananeh AB, Scharnbeck E, Kuck U, Rabiger N (2010) Reduction of milk fouling inside gasketed plate heat exchanger using nano-coatings. Food Bioprod Process 88:349–356

    Article  CAS  Google Scholar 

  99. Barish JA, Goddard JM (2014) Stability of non-fouling stainless steel heat exchanger plates against commercial cleaning agents. J Food Eng 124:143–151

    Article  CAS  Google Scholar 

  100. Quarini G, Aislie E, Ash D, Leiper A, McBryde D, Herbert M, Deans T (2013) Transient thermal performance of ice slurries pumped through pipes. Appl Therm Eng 50:743–748

    Article  Google Scholar 

  101. Palabiyik I, Olunloyo B, Fryer PJ, Robbins PT (2014) Flow regimes in the emptying of pipes filled with a Herschel–Bulkley fluid, online. Chem Eng Res Design 92:2201–2212

    Article  CAS  Google Scholar 

  102. Mundler P, Rumpus L (2012) The energy efficiency of local food systems: a comparison between different modes of distribution. Food Policy 37:609–615

    Article  Google Scholar 

  103. van der Sman RGM, Vergeldt FJ, Van As H, van Dalen G, Voda A, van Duynhoven JPM (2013) Multiphysics pore-scale model for the rehydration of porous foods. Innov Food Sci Emerg Technol 24:69–79

    Article  Google Scholar 

  104. Niamnuy C, Devahastin S, Soponronnarit S (2014) Some recent advances in microstructural modification and monitoring of foods during drying: a review. J Food Eng 123:148–156

    Article  Google Scholar 

  105. Wegrzyn TF, Golding M, Archer RH (2012) Food layered manufacture: a new process for constructing solid foods. Trends Food Sci Technol 27:66–72

    Article  CAS  Google Scholar 

  106. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050—the 2012 revision. FAO, Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  107. Myers N, Kent J (2003) New consumers: the influence of affluence on the environment. Proc Natl Acad Sci 100:4963–4968

    Article  CAS  Google Scholar 

  108. Aiking H (2011) Future protein supply. Trends Food Sci Technol 22:112–120

    Article  CAS  Google Scholar 

  109. Peighambardoust SH, Hamer RJ, Boom RM, van der Goot AJ (2008) Migration of gluten under shear flow as a novel mechanism for separating wheat flour into gluten and starch. J Cereal Sci 48:327–338

    Article  CAS  Google Scholar 

  110. van der Zalm EEJ, van der Goot AJ, Boom RM (2011) Quality of shear fractionated wheat gluten—comparison to commercial vital wheat gluten. J Cereal Sci 53:154–159

    Article  CAS  Google Scholar 

  111. Lubbersen YS, Schutyser MAI, Boom RM (2012) Suspension separation with deterministic ratchets at moderate Reynolds numbers. Chem Eng Sci 73:314–320

    Article  CAS  Google Scholar 

  112. Lubbersen YS, Dijkshoorn JP, Schutyser MAI, Boom RM (2013) Visualization of inertial flow in deterministic ratchets. Sep Purif Technol 109:33–39

    Article  CAS  Google Scholar 

  113. Nirschl H, Keller K (2014) Upscaling of Bio-Nano-Processes; Selective Bioseparation by Magnetic Particles. Springer, Berlin

    Google Scholar 

  114. Rondeau E, Windhab EJ (2014) Vesicles and composite particles by rotating membrane pore extrusion. In Upscaling of bio-nano-processes; selective bioseparation by magnetic particles. Springer-Verlag, Berlin, Heidelberg, ISDN 978-3-662-43898-5

  115. Malik VS, Schulze MB, Hu FB (2006) Intake of sugar-sweetened beverages and weight gain: a systematic review. Am J Clin Nutr 84:274–288

    CAS  Google Scholar 

  116. Rosenheck R (2008) Fast food consumption and increased caloric intake: a systematic review of a trajectory towards weight gain and obesity risk. Obes Rev 9:535–547

    Article  CAS  Google Scholar 

  117. Branca F, Kruse H (2008) WHO European action plan for food and nutrition policy 2007–2012. WHO World Health Organisation, Denmark

    Google Scholar 

  118. Jacobs DR, Gross MD, Tapsell LC (2009) Food synergy: an operational concept for understanding nutrition. Am J Clin Nutr 89:1543S–1548S

    Article  CAS  Google Scholar 

  119. Schutyser MAI, van der Goot AJ (2011) The potential of dry fractionation for sustainable plant protein production. Trends Food Sci Technol 22:154–164

    Article  CAS  Google Scholar 

  120. Hemery Y, Rouau X, Lullien-Pellerin V, Barron C, Abecassis J (2007) Dry processes to develop wheat fractions and products with enhanced nutritional quality. J Cereal Sci 46:327–347

    Article  CAS  Google Scholar 

  121. Pelgrom PJM, Vissers AM, Boom RM, Schutyser MAI (2013) Dry fractionation for production of functional pea protein concentrates. Food Res Int 53:232–239

    Article  CAS  Google Scholar 

  122. Pelgrom PJM, Schutyser, MAI, Boom RM (2012) Thermomechanical morphology of peas and its relation to fracture behaviour. Food Bioprocess Technol 6:3317–3325

    Article  CAS  Google Scholar 

  123. Royal.Society (2012). Royal Society names refrigeration most significant invention in the history of food and drink. https://royalsociety.org/news/2012/top-20-food-innovations

  124. Aguilera JM (2006) Food product engineering: building the right structures. J Sci Food Agric 86:1147–1155

    Article  CAS  Google Scholar 

  125. Karel M (1995) The history and future of food engineering. In: Fito P, Ortega-Rodriguez E, Barbosa-Canovas GV (eds) Food engineering 2000. Springer, New York, p 416

    Google Scholar 

  126. Ward RE, Watzke HJ, Jimenez-Flores R, German JB (2004) Bioguided processing: a paradigm change in food production. Food Technol 58(5):44–48

    Google Scholar 

  127. ETP (2007). European Technology Platform on Food for Life. Strategic Research Agenda 2007-2020 http://etp.fooddrinkeurope.eu

  128. IChemE (2013). Institution of Chemical Engineers. www.icheme.org

  129. Bauer BA, Knorr D (2005) The impact of pressure, temperature and treatment time on starches: pressure-induced starch gelatinisation as pressure time temperature indicator for high hydrostatic pressure processing. J Food Eng 68:329–334

    Article  Google Scholar 

  130. Baier D (2014) Impact of high pressure–low temperature treatment on Micellar Caseins and Whey proteins. Berlin, Technische Univesität, Berlin, Thesis

    Google Scholar 

  131. Tintchev F (2013) High hydrostatic pressure-temperature modeling of Frankfurters batters-mechanisms, salt reduction, applications. Thesis, Berlin, Technische Universität Berlin, 167

  132. De Roeck A, Sila DN, Duvetter T, Van Loey A, Hendrickx M (2008) Effect of high pressure/high temperature processing on cell wall pectic substances in relation to firmness of carrot tissue. Food Chem 107:1225–1235

    Article  CAS  Google Scholar 

  133. Balasa A, Janositz A, Knorr D (2011) Electric field stress on plant systems. In: Heldman DR, Hoover DG, Wheeler MB (eds) Encyclopedia of biotechnology in agriculture and food. CRC Press, Boca Raton, FL

    Google Scholar 

  134. Jaeger H, Schulz M, Lu P, Knorr D (2012) Adjustment of milling, mash electroporation and pressing for the development of a PEF assisted juice production in industrial scale. Innov Food Sci Emerg Technol 14:46–60

    Article  Google Scholar 

  135. Schössler K, Thomas T, Knorr D (2012) Modification of cell structure and mass transfer in potato tissue by contact ultrasound. Food Res Int 49:425–431

    Article  CAS  Google Scholar 

  136. Volkert M, Ananta E, Luscher C, Knorr D (2008) Effect of air freezing, spray freezing, and pressure shift freezing on membrane integrity and viability of Lactobacillus rhamnosus GG. J Food Eng 87:532–540

    Article  Google Scholar 

  137. Ananta E, Knorr D (2004) Evidence on the role of protein biosynthesis in the induction of heat tolerance of Lactobacillus rhamnosus GG by pressure pre-treatment. Int J Food Microbiol 96:307–313

    Article  CAS  Google Scholar 

  138. Ferrua MJ, Singh RP (2010) Modeling the fluid dynamics in a human stomach to gain insight of food digestion. J Food Sci 75:R151–R162

    Article  CAS  Google Scholar 

  139. Rauh C, Singh J, Nagel M, Delgado A (2012) Objective analysis and prediction of texture perception of yoghurt by hybrid neuro-numerical methods. Int Dairy. 26:2–14

    Article  Google Scholar 

  140. Knorr D (1983) Sustainable food systems. AVI Publishing Co, Westport CT

    Google Scholar 

  141. Scheunemann M (2013) Influence of baking plate materials on sensory properties of pizza crust—experimental and numerical approaches. Thesis, Berlin, Technische Universität Berlin

  142. Schmäche R (2013) Simulation of heat transfer processes during the baking process of pizza crust—importance of contact surface materials on crust formation. Thesis, Berlin, Technische Universität Berlin

  143. Janositz A (2005) Auswirkung von Hochspannungsimpulsen auf das Schnittverhalten von Kartoffeln (Solanum tuberosum). Thesis, Berlin, Technische Universität Berlin

  144. ETP (2008). The European Bioeconomy in 2030: delivering sustainable growth by addressing

  145. Rumpold BA, Schluter OK (2013) Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res 57:802–823

    Article  CAS  Google Scholar 

  146. Van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P (2013) Edible insects—future prospects for food and feed security. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  147. ETP (2012) European technology platform food for life. Strategic Research and Innovation Agenda. http://etp.fooddrinkeurope.eu

  148. Schiefer G, Deiters J (2013) Transparency in the Food Chain. Bonn

  149. COST (2014) Electroporation based technologies. www.cost.eu/domains_actions/bmbs/Actions/TD1104

  150. Khoo CS, Knorr D (2014) Grand challenges in nutrition and food science technology. Frontiers in Nutrition 1:4

    Article  Google Scholar 

  151. Frohling A, Baier M, Ehlbeck J, Knorr D, Schluter O (2012) Atmospheric pressure plasma treatment of Listeria innocua and Escherichia coli at polysaccharide surfaces: inactivation kinetics and flow cytometric characterization. Innov Food Sci Emerg Technol 13:142–150

    Article  CAS  Google Scholar 

  152. Moskowitz H, Saguy IS, Straus T (2009) An integrated approach to new food product development. CRC Press, Boca Raton

    Book  Google Scholar 

  153. Foresight (2011) The future of food and farming: challenges and choices for global sustainability, Final Project Report. The Government Office for Science, London

  154. Floros JD, Newsome R, Fisher W, Barbosa-Canovas GV, Chen HD, Dunne CP, German JB, Hall RL, Heldman DR, Karwe MV, Knabel SJ, Labuza TP, Lund DB, Newell-McGloughlin M, Robinson JL, Sebranek JG, Shewfelt RL, Tracy WF, Weaver CM, Ziegler GR (2010) Feeding the world today and tomorrow: the importance of food science and technology. An IFT scientific review. Compr Rev Food Sci Food Saf 9(5):572–599

    Article  Google Scholar 

  155. Saguy IS, Singh RP, Johnson T, Fryer PJ, Sastry SK (2013) Challenges facing food engineering. J Food Eng 119:332–342

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yrjö H. Roos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roos, Y.H., Fryer, P.J., Knorr, D. et al. Food Engineering at Multiple Scales: Case Studies, Challenges and the Future—A European Perspective. Food Eng Rev 8, 91–115 (2016). https://doi.org/10.1007/s12393-015-9125-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-015-9125-z

Keywords

Navigation