Food Engineering Reviews

, Volume 7, Issue 4, pp 491–513 | Cite as

Edible Bio-Based Nanostructures: Delivery, Absorption and Potential Toxicity

  • Joana T. Martins
  • Óscar L. Ramos
  • Ana C. Pinheiro
  • Ana I. Bourbon
  • Hélder D. Silva
  • Melissa C. Rivera
  • Miguel A. Cerqueira
  • Lorenzo Pastrana
  • F. Xavier Malcata
  • África González-Fernández
  • António A. Vicente
Review Article

Abstract

The development of bio-based nanostructures as nanocarriers of bioactive compounds to specific body sites has been presented as a hot topic in food, pharmaceutical and nanotechnology fields. Food and pharmaceutical industries seek to explore the huge potential of these nanostructures, once they can be entirely composed of biocompatible and non-toxic materials. At the same time, they allow the incorporation of lipophilic and hydrophilic bioactive compounds protecting them against degradation, maintaining its active and functional performance. Nevertheless, the physicochemical properties of such structures (e.g., size and charge) could change significantly their behavior in the gastrointestinal (GI) tract. The main challenges in the development of these nanostructures are the proper characterization and understanding of the processes occurring at their surface, when in contact with living systems. This is crucial to understand their delivery and absorption behavior as well as to recognize potential toxicological effects. This review will provide an insight into the recent innovations and challenges in the field of delivery via GI tract using bio-based nanostructures. Also, an overview of the approaches followed to ensure an effective deliver (e.g., avoiding physiological barriers) and to enhance stability and absorptive intestinal uptake of bioactive compounds will be provided. Information about nanostructures’ potential toxicity and a concise description of the in vitro and in vivo toxicity studies will also be given.

Keywords

Nanoparticles Bioactive compounds Gastrointestinal tract Intestinal absorption Absorption enhancers 

References

  1. 1.
    Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14:3–15CrossRefGoogle Scholar
  2. 2.
    Agrawal GK, Timperio AM, Zolla L, Bansal V, Shukla R, Rakwal R (2013) Biomarker discovery and applications for foods and beverages: proteomics to nanoproteomics. J Proteomics 93:74–92CrossRefGoogle Scholar
  3. 3.
    Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61:457–466CrossRefGoogle Scholar
  4. 4.
    Akbulut O, Mace CR, Martinez RV, Kumar AA, Nie Z, Patton MR, Whitesides GM (2012) Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano Lett 12:4060–4064CrossRefGoogle Scholar
  5. 5.
    Alemdaroglu FE, Alemdaroglu NC, Langguth P, Herrmann A (2008) Cellular uptake of DNA block copolymer micelles with different shapes. Macromol Rapid Commun 29:326–329CrossRefGoogle Scholar
  6. 6.
    Arora S, Rajwade JM, Paknikar KM (2012) Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 258:151–165CrossRefGoogle Scholar
  7. 7.
    Atal N, Bedi K (2010) Bioenhancers: revolutionary concept to market. J Ayurveda Integr Med 1:96–99CrossRefGoogle Scholar
  8. 8.
    Aungst BJ (2012) Absorption enhancers: applications and advances. AAPS J 14:10–18CrossRefGoogle Scholar
  9. 9.
    Azevedo MA, Bourbon AI, Vicente AA, Cerqueira MA (2014) Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. Int J Biol Macromol 71:141–146CrossRefGoogle Scholar
  10. 10.
    Bergin IL, Witzmann FA (2013) Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. Int J Biomed Nanosci Nanotechnol 3:163–210CrossRefGoogle Scholar
  11. 11.
    Berton-Carabin CC, Coupland JN, Elias RJ (2013) Effect of the lipophilicity of model ingredients on their location and reactivity in emulsions and solid lipid nanoparticles. Colloids Surf Physicochem Eng Asp 431:9–17CrossRefGoogle Scholar
  12. 12.
    Blasco C, Picó Y (2011) Determining nanomaterials in food. TrAC-Trend Anal Chem 30:84–99CrossRefGoogle Scholar
  13. 13.
    Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, ten Voorde SECG, Wijnhoven SWP, Marvin HJP, Sips AJAM (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62CrossRefGoogle Scholar
  14. 14.
    Buehler MJ, Cranford S (2010) Materiomics: biological protein materials, from nano to macro. Nanotechnol Sci Appl 3:127–147CrossRefGoogle Scholar
  15. 15.
    Cerqueira M, Pinheiro AC, Silva HD, Ramos PE, Azevedo MA, Flores-López ML, Rivera MC, Bourbon AI, Ramos ÓL, Vicente AA (2014) Design of bio-nanosystems for oral delivery of functional compounds. Food Eng Rev 6:1–19CrossRefGoogle Scholar
  16. 16.
    Chalasani KB, Russell-Jones GJ, Jain AK, Diwan PV, Jain SK (2007) Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles. J Control Release 122:141–150CrossRefGoogle Scholar
  17. 17.
    Chang C (2010) The immune effects of naturally occurring and synthetic nanoparticles. J Autoimmun 34:J234–J246CrossRefGoogle Scholar
  18. 18.
    Chen L, Subirade M (2006) Alginate–whey protein granular microspheres as oral delivery vehicles for bioactive compounds. Biomaterials 27:4646–4654CrossRefGoogle Scholar
  19. 19.
    Chen L, Remondetto GE, Subirade M (2006) Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol 17:272–283CrossRefGoogle Scholar
  20. 20.
    Chen M-C, Mi F-L, Liao Z-X, Hsiao C-W, Sonaje K, Chung M-F, Hsu L-W, Sung H-W (2013) Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Del Rev 65:865–879CrossRefGoogle Scholar
  21. 21.
    Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668CrossRefGoogle Scholar
  22. 22.
    Couvreur P, Kante B, Roland M, Guiot P, Bauduin P, Speiser P (1979) Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol 31:331–332CrossRefGoogle Scholar
  23. 23.
    Cui J, van Koeverden MP, Müllner M, Kempe K, Caruso F (2014) Emerging methods for the fabrication of polymer capsules. Adv Colloid Interface Sci 207:14–31CrossRefGoogle Scholar
  24. 24.
    Dandekar PP, Jain R, Patil S, Dhumal R, Tiwari D, Sharma S, Vanage G, Patravale V (2010) Curcumin-loaded hydrogel nanoparticles: application in anti-malarial therapy and toxicological evaluation. J Pharm Sci 99:4992–5010CrossRefGoogle Scholar
  25. 25.
    Das RK, Kasoju N, Bora U (2010) Encapsulation of curcumin in alginate–chitosan–pluronic composite nanoparticles for delivery to cancer cells. Nanomed Nanotechnol Biol Med 6:153–160CrossRefGoogle Scholar
  26. 26.
    David-Birman T, Mackie A, Lesmes U (2013) Impact of dietary fibers on the properties and proteolytic digestibility of lactoferrin nano-particles. Food Hydrocoll 31:33–41CrossRefGoogle Scholar
  27. 27.
    De Lima R, Feitosa L, Pereira AdES, De Moura MR, Aouada FA, Mattoso LHC, Fraceto LF (2010) Evaluation of the genotoxicity of chitosan nanoparticles for use in food packaging films. J Food Sci 75:N89–N96CrossRefGoogle Scholar
  28. 28.
    del Mercato LL, Rivera-Gil P, Abbasi AZ, Ochs M, Ganas C, Zins I, Sonnichsen C, Parak WJ (2010) LbL multilayer capsules: recent progress and future outlook for their use in life sciences. Nanoscale 2:458–467CrossRefGoogle Scholar
  29. 29.
    Delcea M, Möhwald H, Skirtach AG (2011) Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Drug Del Rev 63:730–747CrossRefGoogle Scholar
  30. 30.
    Dell’Orco D, Lundqvist M, Cedervall T, Linse S (2012) Delivery success rate of engineered nanoparticles in the presence of the protein corona: a systems-level screening. Nanomed Nanotechnol Biol Med 8:1271–1281CrossRefGoogle Scholar
  31. 31.
    des Rieux A, Fievez V, Garinot M, Schneider Y-J, Préat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1–27CrossRefGoogle Scholar
  32. 32.
    Desai M, Labhasetwar V, Amidon G, Levy R (1996) Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 13:1838–1845CrossRefGoogle Scholar
  33. 33.
    Díaz B, Sánchez-Espinel C, Arruebo M, Faro J, de Miguel E, Magadán S, Yagüe C, Fernández-Pacheco R, Ibarra MR, Santamaría J, González-Fernández Á (2008) Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates. Small 4:2025–2034CrossRefGoogle Scholar
  34. 34.
    Dickinson E (2009) Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocoll 23:1473–1482CrossRefGoogle Scholar
  35. 35.
    Dobrovolskaia MA, McNeil SE (2013) Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 172:456–466CrossRefGoogle Scholar
  36. 36.
    Doh H-J, Jung Y, Balakrishnan P, Cho H-J, Kim D-D (2013) A novel lipid nanoemulsion system for improved permeation of granisetron. Colloids Surf B Biointerfaces 101:475–480CrossRefGoogle Scholar
  37. 37.
    Donato-Capel L, Garcia-Rodenas CL, Pouteau E, Lehmann U, Srichuwong S, Erkner A, Kolodziejczyk E, Hughes E, Wooster TJ, Sagalowicz L (2014) Technological means to modulate food digestion and physiological response. In: Boland M, Golding M, Singh H (eds) Food structures, digestion and health, 1st edn. Academic Press, San DiegoGoogle Scholar
  38. 38.
    Drusch S (2007) Sugar beet pectin: a novel emulsifying wall component for microencapsulation of lipophilic food ingredients by spray-drying. Food Hydrocoll 21:1223–1228CrossRefGoogle Scholar
  39. 39.
    Dufort S, Sancey L, Coll J-L (2012) Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution. Adv Drug Del Rev 64:179–189CrossRefGoogle Scholar
  40. 40.
    EC (2008) Commission Recommendation of 07/02/2008 on a Code of Conduct for Responsible Nanosciences and Nanotechnologies Research 1-10Google Scholar
  41. 41.
    EC (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial. Off J Eur Union 275:38–40Google Scholar
  42. 42.
    EC (2013) Commission delegated regulation (EU) no 1363/2013 of 12 December 2013 amending regulation (EU) no 1169/2011 of the European Parliament and of the Council on the provision of food information to consumers as regards the definition of ‘engineered nanomaterials’. Off J Eur Union 343:26–28Google Scholar
  43. 43.
    EFSA (2009) Scientific Opinion of the Scientific Committee. The potential risks arising from nanoscience and nanotechnologies on food and feed safety. EFSA J 958:1–39Google Scholar
  44. 44.
    EFSA (2011) Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J 9:2140Google Scholar
  45. 45.
    Elsabahy M, Wooley KL (2013) Cytokines as biomarkers of nanoparticle immunotoxicity. Chem Soc Rev 42:5552CrossRefGoogle Scholar
  46. 46.
    Elzoghby AO, Samy WM, Elgindy NA (2012) Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release 161:38–49CrossRefGoogle Scholar
  47. 47.
    Ensign LM, Cone R, Hanes J (2012) Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Del Rev 64:557–570CrossRefGoogle Scholar
  48. 48.
    FAO/WHO (2010) FAO/WHO expert meeting on the application of nanotechnologies in the food and agriculture sectors: potential food safety implications: Meeting Report, RomeGoogle Scholar
  49. 49.
    FDA (2014) Considering whether an FDA-regulated product involves the application of nanotechnology. http://www.fda.gov/regulatoryinformation/guidances/ucm257698.htm. Accessed 08 May 2014
  50. 50.
    Feng C, Wang Z, Jiang C, Kong M, Zhou X, Li Y, Cheng X, Chen X (2013) Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: in vitro and in vivo evaluation. Int J Pharm 457:158–167CrossRefGoogle Scholar
  51. 51.
    Feng C, Sun G, Wang Z, Cheng X, Park H, Cha D, Kong M, Chen X (2014) Transport mechanism of doxorubicin loaded chitosan based nanogels across intestinal epithelium. Eur J Pharm Biopharm 87:197–207CrossRefGoogle Scholar
  52. 52.
    Fischer HC, Chan WCW (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18:565–571CrossRefGoogle Scholar
  53. 53.
    Fischer KE, Jayagopal A, Nagaraj G, Daniels RH, Li EM, Silvestrini MT, Desai TA (2011) Nanoengineered surfaces enhance drug loading and adhesion. Nano Lett 11:1076–1081CrossRefGoogle Scholar
  54. 54.
    FSA (2006) Draft Food Standards Agency regulatory review on nanotechnology in food: issue for comment. http://www.food.gov.uk/multimedia/pdfs/int060401a.pdf. Accessed 08-05-2014
  55. 55.
    Genot AJ, Fujii T, Rondelez Y (2013) In vitro regulatory models for systems biology. Biotechnol Adv 31:789–796CrossRefGoogle Scholar
  56. 56.
    Giese C, Marx U (2014) Human immunity in vitro—solving immunogenicity and more. Adv Drug Del Rev 69–70:103–122CrossRefGoogle Scholar
  57. 57.
    Grassi M, Grassi G, Lapasin R, Colombo I (2007) Understanding drug release and absorption mechanisms: a physical and mathematical approach. CRC Press, Boca RatonGoogle Scholar
  58. 58.
    Guri A, Gülseren I, Corredig M (2013) Utilization of solid lipid nanoparticles for enhanced delivery of curcumin in cocultures of HT29-MTX and Caco-2 cells. Food Funct 4:1410–1419CrossRefGoogle Scholar
  59. 59.
    Guzey D, McClements DJ (2006) Characterization of β-lactoglobulin–chitosan interactions in aqueous solutions: a calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocoll 20:124–131CrossRefGoogle Scholar
  60. 60.
    Hafner A, Lovrić J, Voinovich D, Filipović-Grčić J (2009) Melatonin-loaded lecithin/chitosan nanoparticles: physicochemical characterisation and permeability through Caco-2 cell monolayers. Int J Pharm 381:205–213CrossRefGoogle Scholar
  61. 61.
    He B, Lin P, Jia Z, Du W, Qu W, Yuan L, Dai W, Zhang H, Wang X, Wang J (2013) The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells. Biomaterials 34:6082–6098CrossRefGoogle Scholar
  62. 62.
    Hennink WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Del Rev 64(Supplement):223–236CrossRefGoogle Scholar
  63. 63.
    Hu L, Mao Z, Gao C (2009) Colloidal particles for cellular uptake and delivery. J Mater Chem 19:3108–3115CrossRefGoogle Scholar
  64. 64.
    Hunter AC, Elsom J, Wibroe PP, Moghimi SM (2012) Polymeric particulate technologies for oral drug delivery and targeting: a pathophysiological perspective. Nanomed Nanotechnol Biol Med 8:S5–S20CrossRefGoogle Scholar
  65. 65.
    ISO (2008) Nanotechnologies—terminology and definitions for nano-objects: nanoparticle, nanofibre and nanoplate ISO/TS 27687:2008Google Scholar
  66. 66.
    Jin Y, Song Y, Zhu X, Zhou D, Chen C, Zhang Z, Huang Y (2012) Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Biomaterials 33:1573–1582CrossRefGoogle Scholar
  67. 67.
    Joshi G, Kumar A, Sawant K (2014) Enhanced bioavailability and intestinal uptake of Gemcitabine HCl loaded PLGA nanoparticles after oral delivery. Eur J Pharm Sci 60:80–89CrossRefGoogle Scholar
  68. 68.
    Joye IJ, McClements DJ (2014) Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Curr Opin Colloid Interface Sci 19(5):417–427CrossRefGoogle Scholar
  69. 69.
    Joye IJ, Davidov-Pardo G, McClements DJ (2014) Nanotechnology for increased micronutrient bioavailability. Trends Food Sci Technol 40(2):168–182CrossRefGoogle Scholar
  70. 70.
    Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T (2000) Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm 50:147–160CrossRefGoogle Scholar
  71. 71.
    Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed Engl 48(30):5418–5429CrossRefGoogle Scholar
  72. 72.
    Karakoti AS, Hench LL, Seal S (2006) The potential toxicity of nanomaterials - the role of surfaces. JOM 58:77–82CrossRefGoogle Scholar
  73. 73.
    Kesarwani K, Gupta R (2013) Bioavailability enhancers of herbal origin: an overview. Asian Pac J Trop Biomed 3:253–266CrossRefGoogle Scholar
  74. 74.
    Kettiger H, Schipanski A, Wick P, Huwyler J (2013) Engineered nanomaterial uptake and tissue distribution: from cell to organism. Int J Nanomed 8:3255Google Scholar
  75. 75.
    Khalid N, Kobayashi I, Neves MA, Uemura K, Nakajima M (2013) Preparation and characterization of water-in-oil emulsions loaded with high concentration of l-ascorbic acid. LWT Food Sci Technol 51:448–454CrossRefGoogle Scholar
  76. 76.
    Kim J-E, Yoon I-S, Cho H-J, Kim D-H, Choi Y-H, Kim D-D (2014) Emulsion-based colloidal nanosystems for oral delivery of doxorubicin: improved intestinal paracellular absorption and alleviated cardiotoxicity. Int J Pharm 464(1–2):117–126CrossRefGoogle Scholar
  77. 77.
    Kong F, Singh RP (2010) A human gastric simulator (HGS) to study food digestion in human stomach. J Food Sci 75:E627–E635CrossRefGoogle Scholar
  78. 78.
    Kovatcheva-Datchary P, Arora T (2013) Nutrition, the gut microbiome and the metabolic syndrome. Best Pract Res Clin Gastroentrol 27:59–72CrossRefGoogle Scholar
  79. 79.
    Kowalczyk B, Lagzi I, Grzybowski BA (2011) Nanoseparations: strategies for size and/or shape-selective purification of nanoparticles. Curr Opin Colloid Interface Sci 16:135–148CrossRefGoogle Scholar
  80. 80.
    Krug SM, Amasheh M, Dittmann I, Christoffel I, Fromm M, Amasheh S (2013) Sodium caprate as an enhancer of macromolecule permeation across tricellular tight junctions of intestinal cells. Biomaterials 34:275–282CrossRefGoogle Scholar
  81. 81.
    Lai DY (2012) Toward toxicity testing of nanomaterials in the 21st century: a paradigm for moving forward. WIREs Nanomed Nanobiotechnol 4:1–15CrossRefGoogle Scholar
  82. 82.
    Lai SK, Wang Y-Y, Hanes J (2009) Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Del Rev 61:158–171CrossRefGoogle Scholar
  83. 83.
    Lakshmanan A, Latha P, Subramanian KS (2012) Nanotoxicity—an overview. Int J Adv Life Sci 5:1–11Google Scholar
  84. 84.
    Lee J, Ko S, Kim H, Kwon H (2011) Integrity and cell-monolayer permeability of chitosan nanoparticles in simulated gastrointestinal fluids. Food Sci Biotechnol 20:1033–1042CrossRefGoogle Scholar
  85. 85.
    Leonard F, Ali H, Collnot E-M, Crielaard BJ, Lammers T, Storm G, Lehr C-M (2012) Screening of budesonide nanoformulations for treatment of inflammatory bowel disease in an inflamed 3D cell-culture model. Altex 29:275–285CrossRefGoogle Scholar
  86. 86.
    Li Y, McClements DJ (2014) Modulating lipid droplet intestinal lipolysis by electrostatic complexation with anionic polysaccharides: influence of cosurfactants. Food Hydrocoll 35:367–374CrossRefGoogle Scholar
  87. 87.
    Li Y, Hu M, Xiao H, Du Y, Decker EA, McClements DJ (2010) Controlling the functional performance of emulsion-based delivery systems using multi-component biopolymer coatings. Eur J Pharm Biopharm 76:38–47CrossRefGoogle Scholar
  88. 88.
    Li X, Guo S, Zhu C, Zhu Q, Gan Y, Rantanen J, Rahbek UL, Hovgaard L, Yang M (2013) Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles. Biomaterials 34:9678–9687CrossRefGoogle Scholar
  89. 89.
    Lin Y-H, Chung C-K, Chen C-T, Liang H-F, Chen S-C, Sung H-W (2005) Preparation of nanoparticles composed of chitosan/poly-γ-glutamic acid and evaluation of their permeability through Caco-2 cells. Biomacromolecules 6:1104–1112CrossRefGoogle Scholar
  90. 90.
    Linsinger TPJ, Chaudhry Q, Dehalu V, Delahaut P, Dudkiewicz A, Grombe R, von der Kammer F, Larsen EH, Legros S, Loeschner K, Peters R, Ramsch R, Roebben G, Tiede K, Weigel S (2013) Validation of methods for the detection and quantification of engineered nanoparticles in food. Food Chem 138:1959–1966CrossRefGoogle Scholar
  91. 91.
    Liu F, Urban MW (2010) Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 35:3–23CrossRefGoogle Scholar
  92. 92.
    Liu Z, Wang S, Hu M (2009) Oral absorption basics: pathways, physico-chemical and biological factors affecting absorption. In: Qiu Y, Chen Y, Zhang GGZ, Liu L, Porter WR (eds) Developing solid oral dosage forms. Academic Press, San Diego, pp 263–288CrossRefGoogle Scholar
  93. 93.
    Liu Y, Wang P, Sun C, Zhao J, Du Y, Shi F, Feng N (2011) Bioadhesion and enhanced bioavailability by wheat germ agglutinin-grafted lipid nanoparticles for oral delivery of poorly water-soluble drug bufalin. Int J Pharm 419:260–265CrossRefGoogle Scholar
  94. 94.
    Loh JW, Saunders M, Lim L-Y (2012) Cytotoxicity of monodispersed chitosan nanoparticles against the Caco-2 cells. Toxicol Appl Pharmacol 262:273–282CrossRefGoogle Scholar
  95. 95.
    Lopes MA, Abrahim BA, Cabral LM, Rodrigues CR, Seiça RMF, de Baptista Veiga FJ, Ribeiro AJ (2014) Intestinal absorption of insulin nanoparticles: contribution of M cells. Nanomed Nanotechnol Biol Med 10(6):1139–1151CrossRefGoogle Scholar
  96. 96.
    Loretz B, Bernkop-Schnurch A (2007) In vitro cytotoxicity testing of non-thiolated and thiolated chitosan nanoparticles for oral gene delivery. Nanotoxicology 1:139–148CrossRefGoogle Scholar
  97. 97.
    Lozano T, Rey M, Rojas E, Moya S, Fleddermann J, Estrela-Lopis I, Donath E, Wang B, Mao Z, Gao C, González-Fernández A (2011) Cytotoxicity effects of metal oxide nanoparticles in human tumor cell lines. J Phys: Conf Ser 304:012046Google Scholar
  98. 98.
    Lu F, Wu S-H, Hung Y, Mou C-Y (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5:1408–1413CrossRefGoogle Scholar
  99. 99.
    Luo Y, Teng Z, Wang Q (2012) Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3. J Agric Food Chem 60:836–843CrossRefGoogle Scholar
  100. 100.
    Ma J, Guan R, Shen H, Lu F, Xiao C, Liu M, Kang T (2013) Comparison of anticancer activity between lactoferrin nanoliposome and lactoferrin in Caco-2 cells in vitro. Food Chem Toxicol 59:72–77CrossRefGoogle Scholar
  101. 101.
    Mahmoudi M, Meng J, Xue X, Liang XJ, Rahman M, Pfeiffer C, Hartmann R, Gil PR, Pelaz B, Parak WJ, del Pino P, Carregal-Romero S, Kanaras AG, Tamil Selvan S (2014) Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnol Adv 32:679–692CrossRefGoogle Scholar
  102. 102.
    Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int 2013:1–15CrossRefGoogle Scholar
  103. 103.
    McClements DJ (2013) Edible lipid nanoparticles: digestion, absorption, and potential toxicity. Prog Lipid Res 52:409–423CrossRefGoogle Scholar
  104. 104.
    McClements DJ, Xiao H (2012) Potential biological fate of ingested nanoemulsions: influence of particle characteristics. Food Funct 3:202–220CrossRefGoogle Scholar
  105. 105.
    McClements DJ, Decker EA, Weiss J (2007) Emulsion-based delivery systems for lipophilic bioactive components. J Food Sci 72:R109–R124CrossRefGoogle Scholar
  106. 106.
    Miller T, Rachel R, Besheer A, Uezguen S, Weigandt M, Goepferich A (2012) Comparative investigations on in vitro serum stability of polymeric micelle formulations. Pharm Res 29:448–459CrossRefGoogle Scholar
  107. 107.
    Molino NM, Bilotkach K, Fraser DA, Ren D, Wang S-W (2012) Complement activation and cell uptake responses toward polymer-functionalized protein nanocapsules. Biomacromolecules 13:974–981CrossRefGoogle Scholar
  108. 108.
    Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142CrossRefGoogle Scholar
  109. 109.
    Moros M, Hernáez B, Garet E, Dias JT, Sáez B, Grazú V, González-Fernández A, Alonso C, de la Fuente JM (2012) Monosaccharides versus PEG-functionalized NPs: influence in the cellular uptake. ACS Nano 6:1565–1577CrossRefGoogle Scholar
  110. 110.
    Motornov M, Roiter Y, Tokarev I, Minko S (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35:174–211CrossRefGoogle Scholar
  111. 111.
    Mwilu SK, El Badawy AM, Bradham K, Nelson C, Thomas D, Scheckel KG, Tolaymat T, Ma L, Rogers KR (2013) Changes in silver nanoparticles exposed to human synthetic stomach fluid: effects of particle size and surface chemistry. Sci Total Environ 447:90–98CrossRefGoogle Scholar
  112. 112.
    NanoLyse (2010) Nanoparticles in food: analytical methods for detection and characterisation. Project funded by the European Union’s framework programme. http://www.nanolyse.eu/default.aspx. Accessed 13 June 2014
  113. 113.
    Neal AL (2008) What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362–371CrossRefGoogle Scholar
  114. 114.
    Norris DA, Sinko PJ (1997) The role of surface hydrophobicity in the transport of polystyrene microspheres through Caco-2 cell monolayers and intestinal mucin. In: Proceedings of the controlled release society, pp 17–18Google Scholar
  115. 115.
    Ofokansi K, Winter G, Fricker G, Coester C (2010) Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery. Eur J Pharm Biopharm 76:1–9CrossRefGoogle Scholar
  116. 116.
    Oh JK, Lee DI, Park JM (2009) Biopolymer-based microgels/nanogels for drug delivery applications. Prog Polym Sci 34:1261–1282CrossRefGoogle Scholar
  117. 117.
    Papasani MR, Wang G, Hill RA (2012) Gold nanoparticles: the importance of physiological principles to devise strategies for targeted drug delivery. Nanomed Nanotechnol Biol Med 8:804–814CrossRefGoogle Scholar
  118. 118.
    Patil S, Sandberg A, Heckert E, Self W, Seal S (2007) Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28:4600–4607CrossRefGoogle Scholar
  119. 119.
    Peng Q, Zhang S, Yang Q, Zhang T, Wei X-Q, Jiang L, Zhang C-L, Chen Q-M, Zhang Z-R, Lin Y-F (2013) Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials 34:8521–8530CrossRefGoogle Scholar
  120. 120.
    Pérez OE, David-Birman T, Kesselman E, Levi-Tal S, Lesmes U (2014) Milk protein–vitamin interactions: formation of beta-lactoglobulin/folic acid nano-complexes and their impact on in vitro gastro-duodenal proteolysis. Food Hydrocoll 38:40–47CrossRefGoogle Scholar
  121. 121.
    Peters R, Dam G, Bouwmeester H, Helsper H, Allmaier G, Kammer F, Ramsch R, Solans C, Tomaniov M, Hajslova J, Weigel S (2011) Identification and characterization of organic nanoparticles in food. TrAC-Trend Anal Chem 30:100–112CrossRefGoogle Scholar
  122. 122.
    Pinheiro AC, Lad M, Silva HD, Coimbra MA, Boland M, Vicente AA (2013) Unravelling the behaviour of curcumin nanoemulsions during in vitro digestion: effect of the surface charge. Soft Matter 9:3147CrossRefGoogle Scholar
  123. 123.
    Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2:8–21CrossRefGoogle Scholar
  124. 124.
    Plapied L, Duhem N, des Rieux A, Préat V (2011) Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci 16:228–237CrossRefGoogle Scholar
  125. 125.
    Poma A, Di Giorgio ML (2008) Toxicogenomics to improve comprehension of the mechanisms underlying responses of in vitro and in vivo systems to nanomaterials: a review. Curr Genomics 9:571–585CrossRefGoogle Scholar
  126. 126.
    M-M P, Somchue W, Shiowatana J, Siripinyanond A (2014) Flow field-flow fractionation for particle size characterization of selenium nanoparticles incubated in gastrointestinal conditions. Food Res Int 57:203–209CrossRefGoogle Scholar
  127. 127.
    Powell JJ, Faria N, Thomas-McKay E, Pele LC (2010) Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun 34:J226–J233CrossRefGoogle Scholar
  128. 128.
    Prego C, Paolicelli P, Díaz B, Vicente S, Sánchez A, González-Fernández Á, Alonso MJ (2010) Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine 28:2607–2614CrossRefGoogle Scholar
  129. 129.
    Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P (1993) Development of a new drug carrier made from alginate. J Pharm Sci 82:912–917CrossRefGoogle Scholar
  130. 130.
    Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913CrossRefGoogle Scholar
  131. 131.
    Roger E, Kalscheuer S, Kirtane A, Guru BR, Grill AE, Whittum-Hudson J, Panyam J (2012) Folic acid functionalized nanoparticles for enhanced oral drug delivery. Mol Pharm 9:2103–2110CrossRefGoogle Scholar
  132. 132.
    Rosenblum D, Peer D (2014) Omics-based nanomedicine: the future of personalized oncology. Cancer Lett 352:126–136CrossRefGoogle Scholar
  133. 133.
    Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, OxfordGoogle Scholar
  134. 134.
    Ruh H, Kühl B, Brenner-Weiss G, Hopf C, Diabaté S, Weiss C (2012) Identification of serum proteins bound to industrial nanomaterials. Toxicol Lett 208:41–50CrossRefGoogle Scholar
  135. 135.
    Sagalowicz L, Leser ME (2010) Delivery systems for liquid food products. Curr Opin Colloid Interface Sci 15:61–72CrossRefGoogle Scholar
  136. 136.
    Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145:182–195CrossRefGoogle Scholar
  137. 137.
    Salminen H, Weiss J (2014) Electrostatic adsorption and stability of whey protein–pectin complexes on emulsion interfaces. Food Hydrocoll 35:410–419CrossRefGoogle Scholar
  138. 138.
    Salvia-Trujillo L, Qian C, Martín-Belloso O, McClements DJ (2013) Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions. Food Chem 141:1472–1480CrossRefGoogle Scholar
  139. 139.
    Sanguansri P, Augustin MA (2006) Nanoscale materials development—a food industry perspective. Trends Food Sci Technol 17:547–556CrossRefGoogle Scholar
  140. 140.
    Sarmento B, das Neves J (2012) Chitosan-based systems for biopharmaceuticals: delivery, targeting and polymer therapeutics. Wiley, ChichesterCrossRefGoogle Scholar
  141. 141.
    Semete B, Booysen LIJ, Kalombo L, Venter JD, Katata L, Ramalapa B, Verschoor JÁ, Swai H (2010) In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles. Toxicol Appl Pharmacol 249:158–165CrossRefGoogle Scholar
  142. 142.
    Sessa M, Balestrieri ML, Ferrari G, Servillo L, Castaldo D, D’Onofrio N, Donsì F, Tsao R (2014) Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chem 147:42–50CrossRefGoogle Scholar
  143. 143.
    Sharifi S, Behzadi S, Laurent S, Laird Forrest M, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323CrossRefGoogle Scholar
  144. 144.
    Sheng Y, He H, Zou H (2014) Poly(lactic acid) nanoparticles coated with combined WGA and water-soluble chitosan for mucosal delivery of β-galactosidase. Drug Deliv 21:370–378CrossRefGoogle Scholar
  145. 145.
    Shpigelman A, Cohen Y, Livney YD (2012) Thermally-induced β-lactoglobulin–EGCG nanovehicles: loading, stability, sensory and digestive-release study. Food Hydrocoll 29:57–67CrossRefGoogle Scholar
  146. 146.
    Silva HD, Cerqueira MA, Vicente AA (2011) Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol 5:854–867CrossRefGoogle Scholar
  147. 147.
    Simón-Vázquez R, Lozano-Fernández T, Peleteiro-Olmedo M, González-Fernández Á (2014) Conformational changes in human plasma proteins induced by metal oxide nanoparticles. Colloids Surf B Biointerfaces 113:198–206CrossRefGoogle Scholar
  148. 148.
    Sneharani AH, Karakkat JV, Singh SA, Rao AGA (2010) Interaction of curcumin with β-lactoglobulin—stability, spectroscopic analysis, and molecular modeling of the complex. J Agric Food Chem 58:11130–11139CrossRefGoogle Scholar
  149. 149.
    Somchue W, Sermsri W, Shiowatana J, Siripinyanond A (2009) Encapsulation of α-tocopherol in protein-based delivery particles. Food Res Int 42:909–914CrossRefGoogle Scholar
  150. 150.
    Sonaje K, Lin Y-H, Juang J-H, Wey S-P, Chen C-T, Sung H-W (2009) In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials 30:2329–2339CrossRefGoogle Scholar
  151. 151.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20CrossRefGoogle Scholar
  152. 152.
    Subirade M, Chen L (2008) In: Garti N (ed) Delivery and controlled release of bioactives in foods and nutraceuticals, 1st edn. CRC Press, CambridgeGoogle Scholar
  153. 153.
    Sukhorukov GB, Donath E, Davis S, Lichtenfeld H, Caruso F, Popov VI, MoÈhwald H (1998) Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design. Polym Advan Technol 9:759–767CrossRefGoogle Scholar
  154. 154.
    Szakal C, Roberts SM, Westerhoff P, Bartholomaeus A, Buck N, Illuminato I, Canady R, Rogers M (2014) Measurement of nanomaterials in foods: integrative consideration of challenges and future prospects. ACS Nano 8:3128–3135CrossRefGoogle Scholar
  155. 155.
    Tan JPK, Wang Q, Tam KC (2008) Control of burst release from nanogels via layer by layer assembly. J Control Release 128:248–254CrossRefGoogle Scholar
  156. 156.
    Tang D-W, Yu S-H, Ho Y-C, Huang B-Q, Tsai G-J, Hsieh H-Y, Sung H-W, Mi F-L (2013) Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide. Food Hydrocoll 30:33–41CrossRefGoogle Scholar
  157. 157.
    Tatiraju DV, Bagade VB, Karambelkar PJ, Jadhav VM, Kadam V (2013) Natural bioenhancers: an overview. J Pharmacogn Phytochem 2:55–60Google Scholar
  158. 158.
    Teng Z, Li Y, Luo Y, Zhang B, Wang Q (2013) Cationic β-lactoglobulin nanoparticles as a bioavailability enhancer: protein characterization and particle formation. Biomacromolecules 14:2848–2856CrossRefGoogle Scholar
  159. 159.
    Teng Z, Luo Y, Wang T, Zhang B, Wang Q (2013) Development and application of nanoparticles synthesized with folic acid conjugated soy protein. J Agric Food Chem 61:2556–2564CrossRefGoogle Scholar
  160. 160.
    Thanki K, Gangwal RP, Sangamwar AT, Jain S (2013) Oral delivery of anticancer drugs: challenges and opportunities. J Control Release 170:15–40CrossRefGoogle Scholar
  161. 161.
    Ting Y, Jiang Y, Ho C-T, Huang Q (2014) Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals. J Funct Foods 7:112–128CrossRefGoogle Scholar
  162. 162.
    Torne SJ, Ansari KA, Vavia PR, Trotta F, Cavalli R (2010) Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv 17:419–425CrossRefGoogle Scholar
  163. 163.
    Torres-Lugo M, García M, Record R, Peppas NA (2002) pH-sensitive hydrogels as gastrointestinal tract absorption enhancers: transport mechanisms of salmon calcitonin and other model molecules using the Caco-2 cell model. Biotechnol Prog 18:612–616CrossRefGoogle Scholar
  164. 164.
    Totosaus A, Montejano JG, Salazar JA, Guerrero I (2002) A review of physical and chemical protein-gel induction. Int J Food Sci Technol 37:589–601CrossRefGoogle Scholar
  165. 165.
    Troncoso E, Aguilera JM, McClements DJ (2012) Influence of particle size on the in vitro digestibility of protein-coated lipid nanoparticles. J Colloid Interface Sci 382:110–116CrossRefGoogle Scholar
  166. 166.
    Vander AJ, Sherman J, Luciano DS (eds) (2011) The digestion and absorption of food. Human physiology: the mechanism of body function, 8th edn. The McGraw-Hill Companies, New York, pp 553–591Google Scholar
  167. 167.
    Vega-Villa KR, Takemoto JK, Yáñez JA, Remsberg CM, Forrest ML, Davies NM (2008) Clinical toxicities of nanocarrier systems. Adv Drug Del Rev 60:929–938CrossRefGoogle Scholar
  168. 168.
    Vicente S, Diaz-Freitas B, Peleteiro M, Sanchez A, Pascual DW, Gonzalez-Fernandez A, Alonso MJ (2013) A polymer/oil based nanovaccine as a single-dose immunization approach. PLoS ONE 8(e62500):1–8Google Scholar
  169. 169.
    Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Del Rev 54:135–147CrossRefGoogle Scholar
  170. 170.
    Wang R, Tian Z, Chen L (2011) Nano-encapsulations liberated from barley protein microparticles for oral delivery of bioactive compounds. Int J Pharm 406:153–162CrossRefGoogle Scholar
  171. 171.
    Wang F, Yu L, Monopoli MP, Sandin P, Mahon E, Salvati A, Dawson KA (2013) The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomed Nanotechnol Biol Med 9:1159–1168CrossRefGoogle Scholar
  172. 172.
    Wang Y, Ma Y, Zheng Y, Song J, Yang X, Bi C, Zhang D, Zhang Q (2013) In vitro and in vivo anticancer activity of a novel puerarin nanosuspension against colon cancer, with high efficacy and low toxicity. Int J Pharm 441:728–735CrossRefGoogle Scholar
  173. 173.
    Woitiski CB, Sarmento B, Carvalho RA, Neufeld RJ, Veiga F (2011) Facilitated nanoscale delivery of insulin across intestinal membrane models. Int J Pharm 412:123–131CrossRefGoogle Scholar
  174. 174.
    Wolfram J, Yang Y, Shen J, Moten A, Chen C, Shen H, Ferrari M, Zhao Y (2014) The nano-plasma interface: implications of the protein corona. Colloids Surf B Biointerfaces 124:17–24CrossRefGoogle Scholar
  175. 175.
    Wong JE, Müller CB, Díez-Pascual AM, Richtering W (2009) Study of layer-by-layer films on thermoresponsive nanogels using temperature-controlled dual-focus fluorescence correlation spectroscopy. J Phys Chem B 113:15907–15913CrossRefGoogle Scholar
  176. 176.
    Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF (2013) Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Del Rev 65:121–138CrossRefGoogle Scholar
  177. 177.
    Yan L, Gu Z, Zhao Y (2013) Chemical mechanisms of the toxicological properties of nanomaterials: generation of intracellular reactive oxygen species. Chem Asian J 8:2342–2353CrossRefGoogle Scholar
  178. 178.
    Yin Y, Chen D, Qiao M, Lu Z, Hu H (2006) Preparation and evaluation of lectin-conjugated PLGA nanoparticles for oral delivery of thymopentin. J Control Release 116:337–345CrossRefGoogle Scholar
  179. 179.
    Zattoni A, Roda B, Borghi F, Marassi V, Reschiglian P (2014) Flow field-flow fractionation for the analysis of nanoparticles used in drug delivery. J Pharm Biomed Anal 87:53–61CrossRefGoogle Scholar
  180. 180.
    Zhang Z-H, Wang X-P, Ayman WY, Munyendo WL, Lv H-X, Zhou J-P (2013) Studies on lactoferrin nanoparticles of gambogic acid for oral delivery. Drug Deliv 20:86–93CrossRefGoogle Scholar
  181. 181.
    Zhang H, Mi J, Huo Y, Huang X, Xing J, Yamamoto A, Gao Y (2014) Absorption enhancing effects of chitosan oligomers on the intestinal absorption of low molecular weight heparin in rats. Int J Pharm 466:156–162CrossRefGoogle Scholar
  182. 182.
    Zhang X, Qi J, Lu Y, He W, Li X, Wu W (2014) Biotinylated liposomes as potential carriers for the oral delivery of insulin. Nanomed Nanotechnol Biol Med 10:167–176CrossRefGoogle Scholar
  183. 183.
    Zhao J, Castranova V (2011) Toxicology of nanomaterials used in nanomedicine. J Toxicol Environ Health B 14:593–632CrossRefGoogle Scholar
  184. 184.
    Zhaojie M, Ming Z, Shengnan W, Xiaojia B, Hatch GM, Jingkai G, Li C (2014) Amorphous solid dispersion of berberine with absorption enhancer demonstrates a remarkable hypoglycemic effect via improving its bioavailability. Int J Pharm 467:50–59CrossRefGoogle Scholar
  185. 185.
    Zhu C, Gupta A, Hall VL, Rayla AL, Christensen RG, Dake B, Lakshmanan A, Kuperwasser C, Stormo GD, Wolfe SA (2013) Using defined finger–finger interfaces as units of assembly for constructing zinc-finger nucleases. Nucleic Acids Res 41:2455–2465CrossRefGoogle Scholar
  186. 186.
    Zimet P, Livney YD (2009) Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocoll 23:1120–1126CrossRefGoogle Scholar
  187. 187.
    Zolnik BS, González-Fernández Á, Sadrieh N, Dobrovolskaia MA (2010) Minireview: nanoparticles and the immune system. Endocrinology 151:458–465CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Joana T. Martins
    • 1
  • Óscar L. Ramos
    • 1
    • 2
  • Ana C. Pinheiro
    • 1
  • Ana I. Bourbon
    • 1
  • Hélder D. Silva
    • 1
  • Melissa C. Rivera
    • 1
  • Miguel A. Cerqueira
    • 1
  • Lorenzo Pastrana
    • 3
  • F. Xavier Malcata
    • 2
  • África González-Fernández
    • 4
  • António A. Vicente
    • 1
  1. 1.Centre of Biological Engineering (CEB)University of MinhoBragaPortugal
  2. 2.Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering, Faculty of EngineeringUniversity of PortoPortoPortugal
  3. 3.Biotechnology Group, Department of Analytical Chemistry and Food ScienceUniversity of VigoOurenseSpain
  4. 4.Immunology, Institute of Biomedical Research (IBIV), Biomedical Research Center (CINBIO)Universidade de VigoVigoSpain

Personalised recommendations