Advertisement

Food Engineering Reviews

, Volume 7, Issue 4, pp 452–490 | Cite as

Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds

  • Verica Đorđević
  • Bojana Balanč
  • Ana Belščak-Cvitanović
  • Steva Lević
  • Kata Trifković
  • Ana Kalušević
  • Ivana Kostić
  • Draženka Komes
  • Branko Bugarski
  • Viktor NedovićEmail author
Review Article

Abstract

The food industry expects increasingly complex properties (such as delayed release, stability, thermal protection, and suitable sensorial profile) from food ingredients, which often would not be able to be achieved without microencapsulation. This paper presents the state of the art in encapsulation technology for delivery of bioactive compounds to food. It reviews common encapsulation technologies (emphasizing their advantages and limitations) versus novel, interesting approaches in emerging technologies. This review includes a presentation of benefits resulting from the use of microencapsulated ingredients in the food industry; these benefits are going to be illustrated via few case studies bringing innovative processing. Spray drying has been used for more than 60 years to protect flavor oils against degradation/oxidation/evaporation, but melt dispersion technique has been used lately to effectively stabilize an aroma compound. Microgels produced by extrusion and emulsification techniques are considered for delivering synergistic antioxidant effects of plant extract polyphenols, their off-taste masking, and improved handling. Apart from microgels, microemulsions (produced by microfluidization or micelle formation techniques) are taken into account for entrapment of extracts containing polyphenols and essential oils. Innovative and interesting coacervation processes are depicted here as they facilitate the commercialization of coacervated food ingredients. Liposomes are gaining increasing attention in the food sector as they can provide good stability even in a water surrounding and also targeted delivery. The new scalable manufacturing protocols for the production of liposomes evolved in recent years (e.g., proliposome method) are presented here. Fluidized bed technology has been offering a versatile possibility to produce encapsulates which should release ingredients at the right place and the right time. Complex systems such as lipids in hydrogels are newly developed structures for controlled release of bioactive compounds. Finally, the effect encapsulates have when incorporated into real food products will be discussed, in particular with regard to the production of innovative functional food products. As an example, textural, sensorial, and physical quality assessment of chocolates enriched with encapsulated polyphenolic antioxidants from yarrow (Achillea millefolium L.) will be reviewed.

Keywords

Encapsulation Bioactive compounds Antioxidants Functional food 

Notes

Acknowledgments

This work was supported by the COST action FA1001 “The application of innovative fundamental food structure–property relationships to the design of foods for health, wellness, and pleasure,” as well as Ministry of Education, Science and Technological Development, Republic of Serbia (Project No. III46010) and the Ministry of Science, Education and Sports, Republic of Croatia (Project No. 058 3470).

References

  1. 1.
    Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14:3–15CrossRefGoogle Scholar
  2. 2.
    Adachi Y, Lu BCY (1983) Supercritical fluid extraction with carbon dioxide and ethylene. Fluid Phase Equilib 14:147–156CrossRefGoogle Scholar
  3. 3.
    Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102CrossRefGoogle Scholar
  4. 4.
    Alonso L, Cuesta P, Fontecha J, Juarez M, Gilliland SE (2009) Use of β-cyclodextrin to decrease the level of cholesterol in milk fat. J Dairy Sci 92:863–869CrossRefGoogle Scholar
  5. 5.
    Amine KM, Champagne CP, Raymond Y, St-Gelais D, Britten M, Fustier P, Salmieri S, Lacroix M (2014) Survival of microencapsulated Bifidobacterium longum in Cheddar cheese during production and storage. Food Control 37:193–199CrossRefGoogle Scholar
  6. 6.
    AnaBio Technologies Ltd. (2014) Global Market for encapsulation. http://www.anabio.ie. Accessed 15 Sept 2014
  7. 7.
    Araujo ME, Machado NT, Meireles MAA (2001) Modeling the phase equilibrium of soybean oil deodorizer distillates + supercritical carbon dioxide using the Peng–Robinson EOS. Ind Eng Chem Res 40:1239–1243CrossRefGoogle Scholar
  8. 8.
    Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23:1631–1640CrossRefGoogle Scholar
  9. 9.
    Astray G, Mejuto JC, Morales J, Rial-Otero R, Simal-Gándara J (2010) Factors controlling flavors binding constants to cyclodextrins and their applications in foods. Food Res Int 43:1212–1218CrossRefGoogle Scholar
  10. 10.
    Asumadu-Mensah A, Smith KW, Ribeiro HS (2013) Solid lipid dispersions: potential delivery system for functional ingredients in foods. J Food Sci 78:E1000–E1008CrossRefGoogle Scholar
  11. 11.
    Augustin MA, Hemar Y (2009) Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev 38:902–912CrossRefGoogle Scholar
  12. 12.
    Ayala-Zavala JF, Del-Toro-Sanchez L, Alvarez-Parrilla E, Gonzalez-Aguilar GA (2008) High relative humidity in-package of fresh-cut fruits and vegetables: advantage or disadvantage considering microbiological problems and antimicrobial delivering systems? J Food Sci 73:41–47CrossRefGoogle Scholar
  13. 13.
    Badens E, Magnan C, Charbit G (2001) Microparticles of soy lecithin formed by supercritical processes. Biotechnol Bioeng 72:194–204CrossRefGoogle Scholar
  14. 14.
    Bae HY, Kim SY, Kwak HS (2008) Comparison of cholesterol-reduced Camembert cheese using cross-linked b-cyclodextrin to regular Camembert cheese during storage. Milchwissenschaft 63:153–156Google Scholar
  15. 15.
    Barbosa-Canovas GV, Ortega-Rivas E, Julijano P, Yan H (2005) Food powders: physical properties, processing, and functionality. Kluwer/Plenum, New YorkGoogle Scholar
  16. 16.
    Barbosa-Canovas GV, Uliano PJ (2004) Adaption of classical processes to new technical developments and quality requirements. J Food Sci 69:240–250CrossRefGoogle Scholar
  17. 17.
    Beckett ST (2000) Industrial chocolate manufacture and use. Wiley-Blackwell, West SussexGoogle Scholar
  18. 18.
    Belščak A, Komes D, Horžić D, Ganić KK, Karlović D (2009) Comparative study of commercially available cocoa products in terms of their bioactive composition. Food Res Int 42:707–716CrossRefGoogle Scholar
  19. 19.
    Belščak-Cvitanović A, Komes D, Benković M, Karlović S, Hečimović I, Ježek D, Bauman I (2012) Innovative formulations of chocolates enriched with plant polyphenols from Rubus idaeus L. leaves and characterization of their physical, bioactive and sensory properties. Food Res Int 48:820–830CrossRefGoogle Scholar
  20. 20.
    Belščak-Cvitanović A, Komes D, Karlović S, Djaković S, Špoljarić I, Mršić G, Ježek D (2015) Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium. Food Chem 167:378–386CrossRefGoogle Scholar
  21. 21.
    Belščak-Cvitanović A, Stojanović R, Manojlović V, Komes D, Cindrić IJ, Nedović V, Bugarski B (2011) Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate–chitosan system enhanced with ascorbic acid by electrostatic extrusion. Food Res Int 44:1094–1101CrossRefGoogle Scholar
  22. 22.
    Berendsen R, Güell C, Ferrando M (2014) A procyanidin-rich extract encapsulated in water-in-oil-in-water emulsions produced by premix membrane emulsification. Food Hydrocoll. doi: 10.1016/j.foodhyd.2014.07.023 Google Scholar
  23. 23.
    Bergonzi MC, Hamdouch R, Mazzacuva F, Isacchi B, Bilia AR (2014) Optimization, characterization and in vitro evaluation of curcumin microemulsions. LWT Food Sci Technol 59:148–155CrossRefGoogle Scholar
  24. 24.
    Bishop JRP, Nelson G, Lamb J (1998) Microencapsulation in yeast cells. J Microencapsul 15:761–773CrossRefGoogle Scholar
  25. 25.
    Bolszo CD, Narvaez AA, McDonell VG, Dunn-Rankin D, Sirignano WA (2010) Pressure-swirl atomization of water-in-oil emulsions. Atomization Sprays 20:1077–1099CrossRefGoogle Scholar
  26. 26.
    Bonnet M, Cansell M, Berkaoui A, Ropers MH, Anton M, Leal-Calderon F (2009) Release rate profiles of magnesium from multiple W/O/W emulsions. Food Hydrocoll 23:92–101CrossRefGoogle Scholar
  27. 27.
    Bou R, Cofrades S, Jimenez-Colmenero F (2014) Physicochemical properties and riboflavin encapsulation in double emulsions with different lipid sources. LWT Food Sci Technol 59:621–628CrossRefGoogle Scholar
  28. 28.
    Boualem K, Subirade M, Desjardins Y, Saucier L (2013) Development of an encapsulation system for the protection and controlled release of antimicrobial nisin at meat cooking temperature. J Food Res 2:36–45CrossRefGoogle Scholar
  29. 29.
    Briones AV, Sato T (2010) Encapsulation of glucose oxidase (GOD) in polyelectrolyte complexes of chitosan–carrageenan. React Funct Polym 70:19–27CrossRefGoogle Scholar
  30. 30.
    Buffo RA, Probst K, Zehentbauer G, Luo Z, Reineccius GA (2002) Effects of agglomeration on the properties of spray-dried encapsulated flavours. Flavour Frag J 17:292–299CrossRefGoogle Scholar
  31. 31.
    Bule MV, Singhal RS, Kennedy JF (2010) Microencapsulation of ubiquinone-10 in carbohydrate matrices for improve stability. Carbohyd Polym 82:1290–1296CrossRefGoogle Scholar
  32. 32.
    Burey P, Bhandari BR, Howes T, Gidley MJ (2008) Hydrocolloid gel particles: formation, characterization, and application. Crit Rev Food Sci Nutr 48:361–377CrossRefGoogle Scholar
  33. 33.
    Burgain J, Gaiani C, Linder M, Scher J (2011) Encapsulation of probiotic living cells: from laboratory scale to industrial applications. J Food Eng 104:467–483CrossRefGoogle Scholar
  34. 34.
    Butstraen C, Salaün F (2014) Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydr Polym 99:608–616CrossRefGoogle Scholar
  35. 35.
    Calero-Rubio C, Stashenko E, Martínez JR, López-Giraldo LJ (2014) Formulation of a new generic density-based model for modeling solubility of polyphenols in supercritical carbon dioxide and ethanol. J Supercrit Fluids 85:116–122CrossRefGoogle Scholar
  36. 36.
    Çam M, Içyer NC, Erdogan F (2014) Pomegranate peel phenolics: microencapsulation, storage stability and potential ingredient for functional food development. LWT Food Sci Technol 55:117–123CrossRefGoogle Scholar
  37. 37.
    Campardelli R, Cherain M, Perfetti C, Iorio C, Scognamiglio M, Reverchon E, Della Porta G (2013) Lipid nanoparticles production by supercritical fluid assisted emulsion–diffusion. J Supercrit Fluids 82:34–40CrossRefGoogle Scholar
  38. 38.
    Cano-Sarabia M, Ventosa N, Sala S, Patiño C, Arranz R, Veciana J (2008) Preparation of uniform rich cholesterol unilamellar nanovesicles using CO2-expanded solvents. Langmuir 24:2433–2437CrossRefGoogle Scholar
  39. 39.
    Carneiro HCF, Tonon RV, Grosso CRF, Hubinger MD (2013) Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J Food Eng 115:443–451CrossRefGoogle Scholar
  40. 40.
    Chambi HNM, Alvim ID, Barrera-Arellano D, Grosso CRF (2008) Solid lipid microparticles containing water-soluble compounds of different molecular. Food Res Int 41:229–236CrossRefGoogle Scholar
  41. 41.
    Champagne CP, Fustier P (2007) Microencapsulation for the improved delivery of bioactive compounds into foods. Curr Opin Biotechnol 18:184–190CrossRefGoogle Scholar
  42. 42.
    Chan ES, Lee BB, Ravindra P, Poncelet D (2009) Prediction models for shape and size of ca-alginate macrobeads produced through extrusion–dripping method. J Colloid Interface Sci 338:63–72CrossRefGoogle Scholar
  43. 43.
    Charve J, Reineccius GA (2009) Encapsulation performance of proteins and traditional materials for spray dried flavors. J Agric Food Chem 57:2486–2492CrossRefGoogle Scholar
  44. 44.
    Chatterjee D, Bhattacharjee P (2013) Comparative evaluation of the antioxidant efficacy of encapsulated and un-encapsulated eugenol-rich clove extracts in soybean oil: shelf-life and frying stability of soybean oil. J Food Eng 117:545–550CrossRefGoogle Scholar
  45. 45.
    Chattopadhyay P, Gupta RB (2002) Protein Nanoparticles formation by supercritical antisolvent with enhanced mass transfer. AIChE J 48:235–244CrossRefGoogle Scholar
  46. 46.
    Chau C-F, Wu S-H, Yen G-C (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280CrossRefGoogle Scholar
  47. 47.
    Chen K-H, Mueannoom W, Gaisford S, Kett VL (2012) Investigation into the effect of varying l-leucine concentration on the product characteristics of spray-dried liposome powders. J Pharm Pharmacol 64:1412–1424CrossRefGoogle Scholar
  48. 48.
    Chen Q, McGillivray D, Wen J, Zhong F, Quek SY (2013) Co-encapsulation of fish oil with phytosterol esters and limonene by milk proteins. J Food Eng 117:505–512CrossRefGoogle Scholar
  49. 49.
    Chrastil J (1982) Solubility of solids and liquids in supercritical gases. J Phys Chem 86:3016–3021CrossRefGoogle Scholar
  50. 50.
    Chun JY, You SK, Lee MY, Choi MJ, Min SG (2012) Characterization of b-cyclodextrin self-aggregates for eugenol encapsulation. Int J Food Eng 8:1–19Google Scholar
  51. 51.
    Chung C, Degner B, Decker EA, McClements DJ (2013) Oil-filled hydrogel particles for reduced-fat food applications: fabrication, characterization, and properties. Innov Food Sci Emerg Technol 20:324–334CrossRefGoogle Scholar
  52. 52.
    Ciamponi F, Duckham C, Tirelli N (2012) Yeast cells as microcapsules. Analytical tools and process variables in the encapsulation of hydrophobes in S. cerevisiae. Appl Microbiol Biotechnol 95:1445–1456CrossRefGoogle Scholar
  53. 53.
    Cilek B, Luca A, Hasirci V, Sahin S, Sumnu G (2012) Microencapsulation of phenolic compounds extracted from sour cherry pomace: effect of formulation, ultrasonication time and core to coating ratio. Eur Food Res Technol 235:587–596CrossRefGoogle Scholar
  54. 54.
    Ciobanu A, Landy D, Fourmentin S (2013) Complexation efficiency of cyclodextrins for volatile flavor compounds. Food Res Int 53:110–114CrossRefGoogle Scholar
  55. 55.
    Ciobanu A, Mallard I, Landy D, Brabie G, Nistor D, Fourmentin S (2012) Inclusion interactions of cyclodextrins and crosslinked cyclodextrin polymers with linalool and camphor in Lavandula angustifolia essential oil. Carbohydr Polym 87:1963–1970CrossRefGoogle Scholar
  56. 56.
    Ciobanu A, Mallard I, Landy D, Brabie G, Nistor D, Fourmentin S (2013) Retention of aroma compounds from Mentha piperita essential oil by cyclodextrins and crosslinked cyclodextrin polymers. Food Chem 138:291–297CrossRefGoogle Scholar
  57. 57.
    Cocero MJ, Martín Á, Mattea F, Varona S (2009) Encapsulation and co-precipitation processes with supercritical fluids: fundamentals and applications. J Supercrit Fluids 47:546–555CrossRefGoogle Scholar
  58. 58.
    Cofrades S, Antoniou I, Solas MT, Herrero AM, Jiménez-Colmenero F (2013) Preparation and impact of multiple (water-in-oil-in-water) emulsions in meat systems. Food Chem 141:338–346CrossRefGoogle Scholar
  59. 59.
    Cofrades S, Santos-Lopez JA, Freire M, Benedí J, Sanchez-Muniz FJ, Jimenez-Colmenero F (2014) Oxidative stability of meat systems made with W1/O/W2 emulsions prepared with hydroxytyrosol and chia oil as lipid phase. LWT Food Sci Technol 59:941–947CrossRefGoogle Scholar
  60. 60.
    Comunian TA, Thomazini MA, Alves AJG, de Matos Junior FE, de Carvalho Balieiro JC, Favaro-Trindade CS (2013) Microencapsulation of ascorbic acid by complex coacervation: protection and controlled release. Food Res Int 52:373–379CrossRefGoogle Scholar
  61. 61.
    Dardelle G, Normand V, Steenhoudt M, Bouquerand PE, Chevalier M, Baumgartner P (2007) Flavour-encapsulation and flavour-release performances of a commercial yeast-based delivery system. Food Hydrocoll 21:953–960CrossRefGoogle Scholar
  62. 62.
    Davidov-Pardo G, McClements DJ (2015) Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chem 167:205–212CrossRefGoogle Scholar
  63. 63.
    Davidov-Pardo G, Moreno M, Arozarena I, Marín-Arroyo MR, Bleibaum RN, Bruhn CM (2012) Sensory and consumer perception of the addition of grape seed extracts in cookies. J Food Sci 77:S430–S438CrossRefGoogle Scholar
  64. 64.
    De Marco I, Prosapio V, Cice F, Reverchon E (2013) Use of solvent mixtures in supercritical antisolvent process to modifyprecipitates morphology: cellulose acetate microparticles. J Supercrit Fluids 83:153–160CrossRefGoogle Scholar
  65. 65.
    De Nobel JG, Klism FM, Munnikm T, Priemm J, Van den Ende H (1990) An assay of relative cell wall porosity in Saccharomyces cerevisiae, Kluyveromyces lactis and Schizosaccharomyces pombe. Yeast 6:483–490CrossRefGoogle Scholar
  66. 66.
    Del Toro-Sanchez CL, Ayala-Zavala JF, Machi L, Santacruz H, Villegas-Ochoa MA, Alvarez-Parrilla E, González-Aguilar GA (2010) Controlled release of antifungal volatiles of thyme essential oil from β-cyclodextrin capsules. J Incl Phenom Macrocycl Chem 67:431–441CrossRefGoogle Scholar
  67. 67.
    Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046CrossRefGoogle Scholar
  68. 68.
    del Valle JM, Aguilera JM (1988) An improved equation for predicting the solubility of vegetable oils in supercritical CO2. Ind Eng Chem Res 27:1551–1553CrossRefGoogle Scholar
  69. 69.
    Della Porta G, Falco N, Reverchon E (2011) Continuous supercritical emulsions extraction: a new technology for biopolymer microparticles production. Biotechnol Bioeng 108:676–686CrossRefGoogle Scholar
  70. 70.
    Dewettinck K, Huyghebaert A (1999) Fluidized bed coating in food technology. Trends Food Sci Technol 10:163–168CrossRefGoogle Scholar
  71. 71.
    Di Sabatino M, Albertini B, Kett VL, Passerini N (2012) Spray congealed lipid microparticles with high protein loading: preparation and solid state characterization. Eur J Pharm Sci 46:346–356CrossRefGoogle Scholar
  72. 72.
    Dias HMAM, Berbicz F, Pedrochic F, Baesso ML, Matioli G (2010) Butter cholesterol removal using different complexation methods with beta-cyclodextrin, and the contribution of photoacoustic spectroscopy to the evaluation of the complex. Food Res Int 43:1104–1110CrossRefGoogle Scholar
  73. 73.
    Dib Taxi CMA, De Menezes HC, Santos AB, Grosso CRF (2003) Study of the microcapsulation of camu-camu (Myrciaria dubia) juice. J Microcapsul 20:443–448CrossRefGoogle Scholar
  74. 74.
    Dima C, Cotârlet M, Alexe P, Dima S (2014) Microencapsulation of essential oil of pimento [Pimenta dioica (L) Merr.] by chitosan/k-carrageenan complex coacervation method. Innov Food Sci Emerg Techol 22:203–211CrossRefGoogle Scholar
  75. 75.
    Ding B, Xia S, Hayat K, Zhang X (2009) Preparation and pH stability of ferrous glycinate liposomes. J Agric Food Chem 57:2938–2944CrossRefGoogle Scholar
  76. 76.
    Ding WK, Shah NP (2008) Survival of free and microencapsulated probiotic bacteria in orange and apple juices. Int Food Res J 15:219–232Google Scholar
  77. 77.
    Dong Z, Maa Y, Hayat K, Jia C, Xia S, Zhang X (2011) Morphology and release profile of microcapsules encapsulating peppermint oil by complex coacervation. J Food Eng 104:455–460CrossRefGoogle Scholar
  78. 78.
    Donsi F, Annunziata M, Sessa M, Ferrari G (2011) Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT-Food Sci Technol 44:1908–1914CrossRefGoogle Scholar
  79. 79.
    Donsi F, Senatore B, Huang Q, Ferrari G (2010) Development of novel pea protein-based nanoemulsions for delivery of nutraceuticals. J Agric Food Chem 58:10653–10660CrossRefGoogle Scholar
  80. 80.
    Donsi F, Sessa M, Ferrari G (2010) Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. J Biotechnol 150:S67–S67CrossRefGoogle Scholar
  81. 81.
    Donsi F, Sessa M, Mediouni H, Mgaidi A, Ferrari G (2011) Encapsulation of bioactive compounds in nanoemulsionbased delivery systems. Procedia Food Sci 1:1666–1671CrossRefGoogle Scholar
  82. 82.
    Dube A, Ng K, Nicolazzo JA, Larson I (2010) Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution. Food Chem 122:662–667CrossRefGoogle Scholar
  83. 83.
    Dubey BN, Windhab EJ (2013) Iron encapsulated microstructured emulsion-particle formation by prilling process and its release kinetics. J Food Eng 115:198–206CrossRefGoogle Scholar
  84. 84.
    Duchêne D (2011) Cyclodextrins and their inclusion complexes. In: Bilensoy E (ed) Cyclodextrins in pharmaceutics, cosmetics, and biomedicine: current and future industrial applications. Wiley, NJGoogle Scholar
  85. 85.
    Evens R, Schamphelaere KAC, Balcaen L, Wang Z, Roy K, Resano M, Flórez M, Boon N, Vanhaecke F, Janssen CR (2012) The use of liposomes to differentiate between the effects of nickel accumulation and altered food quality in Daphnia magna exposed to dietary nickel. Aquat Toxicol 109:80–89CrossRefGoogle Scholar
  86. 86.
    Farhang B, Kakuda Y, Corredig M (2012) Encapsulation of ascorbic acid in liposomes prepared with milk fat globule membrane-derived phospholipids. Dairy Sci Technol 92:353–366CrossRefGoogle Scholar
  87. 87.
    Fathi M, Mozafari MR, Mohebbi M (2012) Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 23:13–27CrossRefGoogle Scholar
  88. 88.
    Fathi M, Varshosaz J, Mohebbi M, Shahidi F (2013) Hesperetin-loaded solid lipid nanoparticles and nanostructure lipid carriers for food fortification: preparation, characterization, and modeling. Food Bioprocess Technol 6:1464–1475CrossRefGoogle Scholar
  89. 89.
    Favaro-Trindade CS, Santana AS, Monterrey-Quintero ES, Trindade MA, Netto FM (2010) The use of spray drying technology to reduce bitter taste of casein hydrolysate. Food Hydrocoll 24:336–340CrossRefGoogle Scholar
  90. 90.
    Fechner A, Knoth A, Scherze I, Muschiolik G (2007) Stability and release properties of double-emulsions stabilised by caseinate–dextran conjugates. Food Hydrocoll 21:943–952CrossRefGoogle Scholar
  91. 91.
    Fernandez-Ronco MP, Cismondi M, Garcia I, De Lucas A, Rodríguez JF (2010) High-pressure equilibria of binary and ternary mixtures of carbon dioxide, tri-glycerides and free fatty acids: measurement and modelling with the GC–EOS. Fluid Phase Equilib 295:1–8CrossRefGoogle Scholar
  92. 92.
    Fioramonti SA, Martinez MJ, Pilosof AMR, Rubiolo AC, Santiago LG (2014) Multilayer emulsions as a strategy for linseed oil microencapsulation: effect of pH and alginate concentration. Food Hydrocoll. doi: 10.1016/j.foodhyd.2014.04.026 Google Scholar
  93. 93.
    Flanagan J, Singh H (2006) Microemulsions: a potential delivery system for bioactives in food. Crit Rev Food Sci Nutr 46:221–237CrossRefGoogle Scholar
  94. 94.
    Formariz TP, Sarmento VHV, Silva-Junior AA, Scarpa MV, Santilli CV, Oliveira AG (2006) Doxorubicin biocompatible O/W microemulsion stabilized by mixed surfactant containing soya phosphatidylcholine. Colloids Surf B 51:54–61CrossRefGoogle Scholar
  95. 95.
    Frasch-Melnik S, Spyropoulos F, Norton I (2010) W1/O/W2 double emulsions stabilised by fat crystals—formulation, stability and salt release. J Colloid Interface Sci 350:178–185CrossRefGoogle Scholar
  96. 96.
    Gamboa OD, Gonçalves LG, Grosso CF (2011) Microencapsulation of tocopherols in lipid matrix by spray chilling method. Procedia Food Sci 1:1732–1739CrossRefGoogle Scholar
  97. 97.
    García E, Gutiérrez S, Nolasco H, Carreón L, Arjona O (2006) Lipid composition of shark liver oil: effects of emulsifying and microencapsulation processes. Eur Food Res Technol 222:697–701CrossRefGoogle Scholar
  98. 98.
    Gaspar F, Lu T, Marriott R, Mellor S, Watkinson C, Al-Duri B, Santos R, Seville J (2003) Solubility of echium, borage, and lunaria seed oils in com-pressed CO2. J Chem Eng Data 48:107–109CrossRefGoogle Scholar
  99. 99.
    Gavory C, Abderrahmen R, Bordes C, Chaussy D, Belgacem MN, Fessi H, Briançon S (2013) Encapsulation of a pressure sensitive adhesive by spray-cooling: optimum formulation and processing conditions. Adv Powder Technol 25:292–300CrossRefGoogle Scholar
  100. 100.
    Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R (2007) Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int 40:1107–1121CrossRefGoogle Scholar
  101. 101.
    Gibis M, Zeeb B, Weiss J (2014) Formation, characterization, and stability of encapsulated hibiscus extract in multilayered liposomes. Food Hydrocoll 38:28–39CrossRefGoogle Scholar
  102. 102.
    Gomes LM, Petito N, Costa VG, Falcão DQ, de Lima Araújo KG (2014) Inclusion complexes of red bell pepper pigments with β-cyclodextrin: preparation, characterisation and application as natural colorant in yogurt. Food Chem 148:428–436CrossRefGoogle Scholar
  103. 103.
    Gonnet M, Lethuaut L, Boury F (2010) New trends in encapsulation of liposoluble vitamins. J Controlled Release 146:276–290CrossRefGoogle Scholar
  104. 104.
    Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15:330–347CrossRefGoogle Scholar
  105. 105.
    Gracia I, Garía MT, Rodríguez JF, Fernández MP, de Lucas A (2009) Modelling of the phase behaviour for vegetable oils at supercritical conditions. J Supercrit Fluids 48:189–194CrossRefGoogle Scholar
  106. 106.
    Grüner S, Otto F, Weinreich B (2003) CPF-technology—a new cryogenic spraying process for pulverization of liquids. In: Proceedings of the 6th international symposium on supercritical fluids, Versailles, FranceGoogle Scholar
  107. 107.
    Guichard E, Langourieux S (2000) Interactions between b-lactoglobulin and flavour compounds. Food Chem 71:301–308CrossRefGoogle Scholar
  108. 108.
    Guzey D, McClements DJ (2006) Formation, stability and properties of multilayer emulsions for application in the food industry. Adv Colloid Interface Sci 128–130:227–248CrossRefGoogle Scholar
  109. 109.
    Hafner V, Dardelle G, Normand V, Fieber W (2011) Determination of flavour loading in complex delivery systems by time-domain NMR. Eur J Lipid Sci Technol 113:856–861CrossRefGoogle Scholar
  110. 110.
    Han EM, Kim SH, Ahn J, Kwak HS (2007) Optimizing cholesterol removal from cream using β-cyclodextrin crosslinked with adipic acid. Int J Dairy Technol 60:31–36CrossRefGoogle Scholar
  111. 111.
    Han EM, Kim SH, Ahn J, Kwak HS (2008) Comparison of cholesterol-reduced cream cheese manufactured using crosslinked β-cyclodextrin to regular cream cheese. Asian-Aust J Anim Sci 21:131–137CrossRefGoogle Scholar
  112. 112.
    Hede P, Bach P, Jensen A (2007) Small-scale top-spray bed coating: granule impact strength, agglomeration tendency and coating layermorphology. Powder Technol 176:156–167CrossRefGoogle Scholar
  113. 113.
    Heinzen C, Berger A, Marison I (2004) Use of vibration technology for jet break-up for encapsulation of cells and liquids in monodisperse microcapsules. In: Nedovic V, Willaert R (eds) Fundamentals of cell immobilisation biotechnology. Kluwer Academic PublishersGoogle Scholar
  114. 114.
    Helgason T, Awad TS, Kristbergsson K, Decker EA, McClements DJ, Weiss J (2009) Impact of surfactant properties on oxidative stability of β-carotene encapsulated within solid lipid nanoparticles. J Agric Food Chem 57:8033–8040CrossRefGoogle Scholar
  115. 115.
    Hentschel A, Gramdorf S, Muller RH, Kurz T (2008) β-Carotene-loaded nanostructured lipid carriers. J Food Sci 73:1–6CrossRefGoogle Scholar
  116. 116.
    Hernández-Rodríguez L, Lobato-Calleros C, Pimentel-González DJ, Vernon-Carter EJ (2014) Lactobacillus plantarum protection by entrapment in whey protein isolate: k-carrageenan complex coacervates. Food Hydrocoll 36:181–188CrossRefGoogle Scholar
  117. 117.
    Hill LE, Gomes C, Taylor MT (2013) Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT Food Sci Technol 51:86–93CrossRefGoogle Scholar
  118. 118.
    Hogan SA, McNamee BF, O’Riordan ED, O’Sullivan M (2001) Emulsification and microencapsulation properties of sodium caseinate/carbohydrate blends. Int Dairy J 11:137–144CrossRefGoogle Scholar
  119. 119.
    Hogan SA, O’Riordan ED, O’Sullivan M (2003) Microencapsulation and oxidative stability of spray-dried fish oil emulsions. J Microencapsul 20:675–688CrossRefGoogle Scholar
  120. 120.
    Holdich RG, Dragosavac M, Vladisavljevic GT, Piacentini E (2013) Continuous membrane emulsification with pulsed (oscillatory) flow. Ind Eng Chem Res 52:507–515Google Scholar
  121. 121.
    Homayouni A, Azizi A, Ehsani MR, Yarmand MS, Razavi SH (2008) Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chem 111:50–55CrossRefGoogle Scholar
  122. 122.
    Huang Z, Li X, Zhang T, Song Y, She Z, Li J, Deng Y (2014) Progress involving new techniques for liposome preparation. Asian J Pharm Sci. doi: 10.1016/j.ajps.2014.06.001 Google Scholar
  123. 123.
    Isailović B, Djordjević V, Nedović V, Bugarski B (2013b) Liposome-in-alginate systems for encapsulation of natural antioxidants. In: Nicolai B, Piazza L (ed) Book of proceedings, inside food symposium, Leuven, BelgiumGoogle Scholar
  124. 124.
    Isailović B, Kostić I, Zvonar A, Đorđević V, Gašperlin M, Nedović V, Bugarski B (2013) Resveratrol loaded liposomes produced by different techniques. Innov Food Sci Emerg Technol 19:181–189CrossRefGoogle Scholar
  125. 125.
    Jaafar-Maalej C, Charcosset C, Fessi H (2011) A new method for liposome preparation using a membrane contactor. J Liposome Res 21:213–220CrossRefGoogle Scholar
  126. 126.
    Jafari SM, Assadpoor E, He Y, Bhandari B (2008) Encapsulation efficiency of food flavours and oils during spray drying. Drying Technol 26:816–835CrossRefGoogle Scholar
  127. 127.
    Jahadi M, Khosravi- Darani K, Ehsani MR, Mozafari MR, Saboury AA, Seydahmadia F, Vafabakhsh Z (2012) Evaluating the effects of process variables on protease-loaded nano-liposome production by plackett–burman design for utilizing in cheese ripening acceleration. Asian J Chem 24:3891–3894Google Scholar
  128. 128.
    Jahadi M, Khosravi-Darani K, Ehsani MR, Mozafari MR, Saboury AA, Pourhosseini PS (2013) The encapsulation of flavourzyme in nanoliposome by heating method. J Food Sci Technol. doi: 10.1007/s13197-013-1243-0 Google Scholar
  129. 129.
    Jarmer DJ, Lengsfeld CS, Randolph TW (2003) Manipulation of particle size distribution of poly(l-lactic acid)nanoparticles with a jet swirl nozzle during precipitation with a compressed antisolvent. J Supercrit Fluids 27:317–336CrossRefGoogle Scholar
  130. 130.
    Jimenez M, Garcia HS, Beristain CI (2008) Sensory evaluation of dairy products supplemented with microencapsulated conjugated linoleic acid (CLA). LWT Food Sci Technol 41:1047–1052CrossRefGoogle Scholar
  131. 131.
    Jimenez T, Turchiuli C, Dumoulin E (2006) Particles agglomeration in a conical fluidized bed in relation with air temperature profiles. Chem Eng Sci 61:5954–5961CrossRefGoogle Scholar
  132. 132.
    Jimenez-Colmenero F (2013) Potential applications of multiple emulsions in the development of healthy and functional foods. Food Res Int 52:64–74CrossRefGoogle Scholar
  133. 133.
    Jin H, Hemingway M, Fei X, Si Ning L, Zhao Y (2011) Production of β-carotene nanoparticles by the solution enhanced dispersion with enhanced mass transfer by ultrasound in supercritical CO2 (SEDS-EM). Ind Eng Chem Res 50:13475–13484CrossRefGoogle Scholar
  134. 134.
    Jin H, Hemingway M, Gupta RB, Xia F, Zhao Y (2012) Preparation of thalidomide nano-flakes by supercritical antisolvent with enhanced mass transfer. Particuology 10:17–23CrossRefGoogle Scholar
  135. 135.
    Jouyban A, Chan HK, Foster NR (2002) Mathematical representation of solute solubility in supercritical carbon dioxide using empirical expressions. J Supercrit Fluids 24:19–35CrossRefGoogle Scholar
  136. 136.
    Jung J, Perrut M (2001) Particle design using supercritical fluids: literature and patent survey. J Supercrit Fluids 20:179–219CrossRefGoogle Scholar
  137. 137.
    Jung TH, Ha HJ, Ahn J, Kwak HS (2008) Development of cholesterol reduced mayonnaise with crosslinked b-cyclodextrin and added phytosterol. Korean J Food Sci Animal Resour 28:211–217CrossRefGoogle Scholar
  138. 138.
    Jun-xia X, Hai-yan Z, Jian Y (2011) Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum Arabic. Food Chem 125:1267–1272CrossRefGoogle Scholar
  139. 139.
    Kailasapathy K, Harmstorf I, Phillips M (2008) Survival of Lactobacillus acidophilus and Bifidobacterium animalis ssp. Lactis in stirred fruit yogurts. LWT Food Sci Technol 41:1317–1322CrossRefGoogle Scholar
  140. 140.
    Kalogeropoulos N, Yannakopoulou K, Gioxari A, Chiou A, Makris PD (2010) Polyphenol characterization and encapsulation in β-cyclodextrin of a flavonoid-rich Hypericum perforatum (St John’s wort) extract. LWT-Food Sci Technol 43:882–889CrossRefGoogle Scholar
  141. 141.
    Karathanos VT, Mourtzinos I, Yannakopoulou K, Andrikopoulos NK (2007) Study of the solubility, antioxidant activity, and structure of inclusion complex of vanillin with beta-cyclodextrin. Food Chem 101:652–658CrossRefGoogle Scholar
  142. 142.
    Kayaci F, Uyar T (2012) Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: prolonged shelf-life and high temperature stability of vanillin. Food Chem 133:641–649CrossRefGoogle Scholar
  143. 143.
    Keller BC (2001) Liposomes in nutrition. Trends Food Sci Technol 12:25–31CrossRefGoogle Scholar
  144. 144.
    Kerdudo A, Dingas A, Fernandez X, Faure C (2014) Encapsulation of rutin and naringenin in multilamellar vesicles for optimum antioxidant activity. Food Chem 159:12–19CrossRefGoogle Scholar
  145. 145.
    Kfoury M, Auezova L, Greige-Gerges H, Ruellan S, Fourmentin S (2014) Cyclodextrin, an efficient tool for trans-anethole encapsulation: chromatographic, spectroscopic, thermal and structural studies. Food Chem 164:454–461CrossRefGoogle Scholar
  146. 146.
    Khalf M, Dabour N, Kheadr E, Fliss I (2010) Viability of probiotic bacteria in maple sap products under storage and gastrointestinal conditions. Bioresour Technol 101:7966–7972CrossRefGoogle Scholar
  147. 147.
    Khalloufi S, Alexander M, Goff HD, Corredig M (2008) Physicochemical properties of whey protein isolate stabilized oil-in-water emulsions when mixed with flaxseed gum at neutral pH. Food Res Int 41:964–972CrossRefGoogle Scholar
  148. 148.
    Klinkesorn U, Sophanodora P, Chinachoti P, Decker EA, McClements DJ (2005) Encapsulation of emulsified tuna oil in two-layered interfacial membranes prepared using electrostatic layer-by-layer deposition. Food Hydrocolloids 19:1044–1053CrossRefGoogle Scholar
  149. 149.
    Komes D, Belščak-Cvitanović A, Vojvodić A, Bušić A, Nedović V, Dorđević V, Bugarski B (2013) Bioactive, physical and sensory properties of chocolates enriched with microencapsulated yarrow (Achillea millefolium L.) bioactive compounds. In: Book of abstracts, 5th international symposium on delivery of functionality in complex food systems. Haifa, IsraelGoogle Scholar
  150. 150.
    Koontz JL, Marcy JE, O’Keefe SF, Duncan SE (2009) Cyclodextrin inclusion complex formation and solid-state characterization of the natural antioxidants alpha-tocopherol and quercetin. J Agric Food Chem 57:1162–1171CrossRefGoogle Scholar
  151. 151.
    Kostic IT, Isailovic BD, Djordjevic VB, Levic S, Nedovic VA, Bugarski BM (2012) Electrostatic extrusion as a dispersion technique for encapsulation of cells and bioactive compounds. Hem Ind 66:503–515CrossRefGoogle Scholar
  152. 152.
    Kotnik P, Škerget M, Knez Ž (2014) Phase equilibria of free fatty acids enriched vegetable oils andcarbon dioxide: experimental data, distribution coefficients and separation factors. J Supercrit Fluids 87:65–72CrossRefGoogle Scholar
  153. 153.
    Koupantsis T, Pavlidou E, Paraskevopoulou A (2014) Flavour encapsulation in milk proteins—CMC coacervate-type complexes. Food Hydrocoll 37:134–142CrossRefGoogle Scholar
  154. 154.
    Krasaekoopt W, Watcharapoka S (2014) Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT Food Sci Technol 57:761–766CrossRefGoogle Scholar
  155. 155.
    Krishnaiah D, Sarbatly R, Nithyanandam R (2012) Microencapsulation of Morinda citrifolia L. extract by spray-drying. Chem Eng Res Des 90:622–632CrossRefGoogle Scholar
  156. 156.
    Kurkov SV, Loftsson T (2013) Cyclodextrins. Int J Pharm 453:167–180CrossRefGoogle Scholar
  157. 157.
    Kurozawa LE, Park KJ, Hubinger MD (2009) Effect of maltodextrin and gum arabic on water sorption and glass transition temperature of spray dried chicken meat hydrolysate protein. J Food Eng 91:287–296CrossRefGoogle Scholar
  158. 158.
    Lamprecht A, Schafer U, Lehr CM (2001) Influences of process parameters on preparation of microparticle used as a carrier system for Ω-3 unsaturated fatty acid ethyl esters used in supplementary nutrition. J Microencapsulation 18:347–357CrossRefGoogle Scholar
  159. 159.
    Lankes H, Sommer K, Weinreich B (2003) Liquid absorption capacity of carriers in the food technology. Powder Technol 134:201–209CrossRefGoogle Scholar
  160. 160.
    Laouini A, Charcosset C, Fessib H, Holdicha RG, Vladisavljevic GT (2013) Preparation of liposomes: a novel application of microengineered membranes–from laboratory scale to large scale. Colloids Surf B 112:272–278CrossRefGoogle Scholar
  161. 161.
    Laouini A, Jaafar-Maalej C, Sfar S, Charcosset C, Fessi H (2011) Liposome preparation using a hollow fiber membrane contactor—application to spironolactone encapsulation. Int J Pharm 415:53–61CrossRefGoogle Scholar
  162. 162.
    Lasch J, Weissig V, Brandl M (2003) Preparation of liposomes. In: Torchilin VP, Weissig V (eds) liposomes. Oxford University Press, New YorkGoogle Scholar
  163. 163.
    Leclercq S, Harlander KR, Reineccius GA (2009) Formation and characterization of microcapsules by complex coacervation with liquid or solid aroma cores. Flavour Fragrance J 24:17–24CrossRefGoogle Scholar
  164. 164.
    Leeke GA, Lu T, Bridson RH, Seville JPK (2014) Application of nano-particle coatings to carrier particles using an integrated fluidized bed supercritical fluid precipitation process. J Supercrit Fluids 91:7–14CrossRefGoogle Scholar
  165. 165.
    Legako J, Dunford TN (2010) Effect of spray nozzle design on fish oil–whey protein microcapsule properties. J Food Sci 75:E394–E400CrossRefGoogle Scholar
  166. 166.
    Lemetter CYG, Meeuse FM, Zuidam NJ (2009) Control of the morphology and the size of complex coacervate microcapsules during scale-up. AIChE J 55:1487–1496CrossRefGoogle Scholar
  167. 167.
    Leonel AJ, Chamham HNM, Barrera-Arellano D, Pastore HO, Grosso CRF (2010) Production and characterization of lipid microparticles produced by spray cooling encapsulating a low molar mass hydrophilic compound. Ciência e Tecnologia de Alimentos 30:276–281CrossRefGoogle Scholar
  168. 168.
    Lesoin L, Boutin O, Crampon C, Badens E (2011) CO2/water/surfactant ternary systems and liposome formation using supercritical CO2: a review. Colloids Surf A Physicochem Eng Aspects 377:1–14CrossRefGoogle Scholar
  169. 169.
    Levic S, Djordjevic VB, Rajic NZ, Milivojevic MM, Bugarski BM, Nedovic VA (2013) Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads. Chem Pap 67:221–228CrossRefGoogle Scholar
  170. 170.
    Liang H, Yuan Q, Vriesekoop F, Lv F (2012) Effects of cyclodextrins on the antimicrobial activity of plant-derived essential oil compounds. Food Chem 135:1020–1027CrossRefGoogle Scholar
  171. 171.
    Liao JW, Hong LZ, Wang MF, Tsai SC, Lin YJ, Chan YC (2010) Mutagenic safety and fatty liver improvement of nanonized black soybeans in senescence-accelerated prone-8 mice. J Food Sci 75:T82–T90CrossRefGoogle Scholar
  172. 172.
    Lin CC, Lin HY, Chen HC, Yu MW, Lee MH (2009) Stability and characterisation of phospholipid-based curcumin-encapsulated microemulsions. Food Chem 116:923–928CrossRefGoogle Scholar
  173. 173.
    Lin CC, Lin HY, Chi MH, Shen CM, Chen HW, Yangd WJ, Lee MH (2014) Preparation of curcumin microemulsions with food-grade soybean oil/lecithin and their cytotoxicity on the HepG2 cell line. Food Chem 154:282–290CrossRefGoogle Scholar
  174. 174.
    Linde GA, Junior AL, de Faria EV, Colauto NB, de Moraes FF, Zanin GM (2009) Taste modification of amino acids and protein hydrolysate by α-cyclodextrin. Food Res Int 42:814–818CrossRefGoogle Scholar
  175. 175.
    Loftsson T, Matthiasson K, Masson M (2003) The effects of organic salts on the cyclodextrin solubilization of drugs. Int J Pharm 262:101–107CrossRefGoogle Scholar
  176. 176.
    Loksuwan J (2007) Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocoll 21:928–935CrossRefGoogle Scholar
  177. 177.
    López-de-Dicastillo C, Catalá R, Gavara R, Hernández-Muñoz P (2011) Food applications of active packaging EVOH films containing cyclodextrins for the preferential scavenging of undesirable compounds. J Food Eng 104:380–386CrossRefGoogle Scholar
  178. 178.
    López-Nicolás JM, Núñez-Delicado E, Sánchez-Ferrer Á, García-Carmona F (2007) Kinetic model of apple juice enzymatic browning in the presence of cyclodextrins: the use of maltosyl-β-cyclodextrin as secondary antioxidant. Food Chem 101:1164–1171CrossRefGoogle Scholar
  179. 179.
    López-Rubio A, Sanchez E, Wilkanowicz S, Sanz Y, Lagaron JM (2012) Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocoll 28:159–167CrossRefGoogle Scholar
  180. 180.
    Loveday SM, Singh H (2008) Recent advances in technologies for vitamin A protection in foods. Trends Food Sci Technol 19:657–668CrossRefGoogle Scholar
  181. 181.
    Lu Z, Chen R, Fu R, Xiong J, Hu Y (2012) Cytotoxicity and inhibition of lipid peroxidation activity of resveratrol/cyclodextrin inclusion complexes. J Incl Phenom Macrocycl Chem 73:313–320CrossRefGoogle Scholar
  182. 182.
    Lucas-Abellán C, Fortea I, Gabaldón JA, Núñez-Delicado E (2008) Encapsulation of quercetin and myricetin in cyclodextrins at acidic pH. J Agric Food Chem 56:255–259CrossRefGoogle Scholar
  183. 183.
    Lutz R, Aserin A, Wicker L, Garti N (2009) Release of electrolytes from W/O/W double emulsion stabilized by a soluble complex of modified pectin and whey protein isolate. Colloids Surf B 74:178–185CrossRefGoogle Scholar
  184. 184.
    Lv Y, Yang F, Li X, Zhang X, Abbas S (2014) Formation of heat-resistant nanocapsules of jasmine essential oil via gelatin/gum arabic based complex coacervation. Food Hydrocoll 35:305–314CrossRefGoogle Scholar
  185. 185.
    Madadlou A, Jaberipour S, Eskandari MH (2014) Nanoparticulation of enzymatically cross-linked whey proteins to encapsulate caffeine via microemulsification/heat gelation procedure. LWT Food Sci Technol 57:725–730CrossRefGoogle Scholar
  186. 186.
    Malmo C, Storia AL, Mauriello G (2013) Microencapsulation of Lactobacillus reuteri DSM 17938 cells coated in alginate beads with chitosan by spray drying to use as a probiotic cell in a chocolate soufflé. Food Bioprocess Technol 6:795–805CrossRefGoogle Scholar
  187. 187.
    Manojlovic V, Djonlagic J, Obradovic B, Nedovic V, Bugarski B (2006) Immobilization of cells by electrostatic droplet generation: a model system for potential application in medicine. Int J Nanomed 1:163–171CrossRefGoogle Scholar
  188. 188.
    Mantegna S, Binello A, Boffa L, Giorgis M, Cena C, Cravotto G (2012) A one-pot ultrasound-assisted water extraction/cyclodextrin encapsulation of resveratrol from Polygonum cuspidatum. Food Chem 130:746–750CrossRefGoogle Scholar
  189. 189.
  190. 190.
    María José C, Martín A, Facundo M, Salima V (2009) Encapsulation and co-precipitation processes with supercritical fluids: fundamentals and applications. J Supercrit Fluids 47:546–555CrossRefGoogle Scholar
  191. 191.
    Marison I, Peters A, Heinzen C (2004) Liquid core capsules for applications in biotechnology. In: Nedovic V, Willaert R (eds) Fundamentals of cell immobilisation biotechnology. Kluwer Academic PublishersGoogle Scholar
  192. 192.
    Martín A, Cocero MJ (2008) Precipitation processes with supercritical fluids: patents review. Recent Patents Eng 2:9–20CrossRefGoogle Scholar
  193. 193.
    Martín Á, Mattea F, Gutiérrez L, Miguel F, Cocero MJ (2007) Co-precipitation of carotenoids and bio-polymers with the supercritical anti-solvent process. J Supercrit Fluids 41:138–147CrossRefGoogle Scholar
  194. 194.
    Martín Á, Varona S, Navarrete A, Cocero MJ (2010) Encapsulation and co-precipitation processes with supercritical fluids: applications with essential oils. The Open Chem Eng J 4:31–41CrossRefGoogle Scholar
  195. 195.
    Maswal M, Dar AA (2014) Formulation challenges in encapsulation and delivery of citral for improved food quality. Food Hydrocoll 37:182–195CrossRefGoogle Scholar
  196. 196.
    Matalanis A, Decker EA, McClements DJ (2012) Inhibition of lipid oxidation by encapsulation of emulsion droplets within hydrogel microspheres. Food Chem 132:766–772CrossRefGoogle Scholar
  197. 197.
    Mawson S, Kanakia S, Johnston KP (1997) Coaxial nozzle for control of particle morphology in precipitation with a compressed fluid antisolvent. J Appl Polym Sci 64:2105–2118CrossRefGoogle Scholar
  198. 198.
    McClements DJ (2012) Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems. Adv Colloid Interface Sci 174:1–30CrossRefGoogle Scholar
  199. 199.
    McClements DJ, Decker EA, Park Y, Weiss J (2009) Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr 49:577–606CrossRefGoogle Scholar
  200. 200.
    McClements DJ, Decker EA, Weiss J (2007) Emulsion-based delivery systems for lipophilioc bioactive components. J Food Sci 72:109–124CrossRefGoogle Scholar
  201. 201.
    Meiners JA (2012) Fluid bed microencapsulation and other coating methods for food ingredient and nutraceutical bioactive compounds. In: Garti N, McClements DJ (eds) Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Woodhead Publishing Limited, CambridgeGoogle Scholar
  202. 202.
    Mendanha DV, Molina Ortiz SE, Favaro-Trindade CS, Mauri A, Monterrey-Quintero ES, Thomazini M (2009) Microencapsulation of casein hydrolysate by complex coacervation with SPI/pectin. Food Res Intern 42:1099–1104CrossRefGoogle Scholar
  203. 203.
    Menger FM, Peresypkin AV, Caran KL, Apkarian RP (2000) Sponge morphology in an elementary coacervate. Langmuir 16:9113–9116CrossRefGoogle Scholar
  204. 204.
    Menrad K (2003) Market and marketing of functional food in Europe. J Food Eng 56:181–188CrossRefGoogle Scholar
  205. 205.
    Mercader-Ros MT, Lucas-Abellán C, Fortea MI, Gabaldón JA, Núñez-Delicado E (2010) Effect of HP-b-cyclodextrins complexation on the antioxidant activity of flavonols. Food Chem 118:769–773CrossRefGoogle Scholar
  206. 206.
    Meure LA, Foster NR, Dehghani F (2008) Conventional and dense gas techniques for the production of liposomes: a review. AAPS Pharm SciTech 9:798–809CrossRefGoogle Scholar
  207. 207.
    Milanovic J, Manojlovic V, Levic S, Rajic N, Nedovic V, Bugarski B (2010) Microencapsulation of flavors in carnauba wax. Sensors 10:901–912CrossRefGoogle Scholar
  208. 208.
    Morselli Ribeiro MDM, Barrera Arellano D, Ferreira Grosso CR (2012) The effect of adding oleic acid in the production of stearic acid lipid microparticles with a hydrophilic core by a spray-cooling process. Food Res Int 47:38–44CrossRefGoogle Scholar
  209. 209.
    Mourtzinos I, Kalogeropoulos N, Papadakis S, Konstantinou K, Karathanos VT (2008) Encapsulation of nutraceutical monoterpenes in beta cyclodextrin and modified startch. J Food Sci 73:89–94CrossRefGoogle Scholar
  210. 210.
    Mozafari MR (2005) Liposomes: an overview of manufacturing techniques. Cell Mol Biol Lett 10:711–719Google Scholar
  211. 211.
    Mozafari MR, Johnson C, Hatziantoniou S, Demetzos C (2008) Nanoliposomes and their applications in food nanotechnology. J Liposome Res 18:309–327CrossRefGoogle Scholar
  212. 212.
    Müller RH, Radtke M, Wissing SA (2002) Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 242:121–128CrossRefGoogle Scholar
  213. 213.
    Muthukumarasamy P, Holley RA (2007) Survival of Escherichia coli O157:H7 in dry fermented sausages containing micro-encapsulated probiotic lactic acid bacteria. Food Microbiol 24:82–88CrossRefGoogle Scholar
  214. 214.
    Muthukumarasamy P, Holley RP (2006) Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. Int J Food Microbiol 111:164–169CrossRefGoogle Scholar
  215. 215.
    Nakagawa K, Iwamoto S, Nakajima M, Shono A, Satoh K (2004) Microchannel emulsification using gelatin and surfactant-free coacervate microencapsulation. J Colloid Interface Sci 278:198–205CrossRefGoogle Scholar
  216. 216.
    Natale D, Gibis M, Rodriguez-Estrada MT, Weiss J (2014) Inhibitory effect of liposomal solutions of grape seed extract on the formation of heterocyclic aromatic amines. J Agric Food Chem 62:279–287CrossRefGoogle Scholar
  217. 217.
    Nazir A, Schroën K, Boom R (2010) Premix emulsification: a review. J Membr Sci 362:1–11CrossRefGoogle Scholar
  218. 218.
    Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B (2011) An overview of encapsulation technologies for food applications. Procedia Food Sci 1:1806–1815CrossRefGoogle Scholar
  219. 219.
    Nedovic V, Kalusevic A, Manojlović V, Petrovic T, Bugarski B (2013) Encapsulation systems in the food industry. In: Yanniotis et al (ed) Advances in food process engineering research. Springer Science + Business Media, New YorkGoogle Scholar
  220. 220.
    Nerome H, Machmudah S, Wahyudiono, Fukuzato R, Higashiura T, Youn Y-S, Lee Y-W, Goto M (2013) Nanoparticle formation of lycopene/β-cyclodextrin inclusion complex using supercritical antisolvent precipitation. J Supercrit Fluids 83:97–103Google Scholar
  221. 221.
    Nori MP, Favaro-Trindade CS, de Alencar SM, Thomazini M, de Camargo Balieiro JC, Contreras Castillo CJ (2011) Microencapsulation of propolis extract by complex coacervation. LWT Food Sci Technol 44:429–435CrossRefGoogle Scholar
  222. 222.
    Normand V, Dardelle G, Bouquerand PE, Nicolas L, Johnston DJ (2005) Flavor encapsulation in yeasts: limonene used as a model system for characterization of the release mechanism. J Agric Food Chem 53:7532–7543CrossRefGoogle Scholar
  223. 223.
    Nunes IL, Mercadante AZ (2007) Encapsulation of lycopene using spray-drying and molecular inclusion processes. Braz Arch Biol Technol 50:893–900CrossRefGoogle Scholar
  224. 224.
    Nutraceuticals Business Review (2014) Boom in packaged food sector drives global food encapsulation market, reveals new report. http://www.nutraceuticalbusinessreview.com. Accessed 15 Sept 2014
  225. 225.
    Nutraceuticals World (2010) Food Encapsulation Market to Reach $39 Billion.http://www.nutraceuticalsworld.com. Accessed 15 Sept 2014
  226. 226.
    Okuro PK, de Matos Junior FE, Favaro-Trindade CS (2013) Technological challenges for spray chilling encapsulation of functional food ingredients spray chilling encapsulation. Food Technol Biotechnol 51:171–182Google Scholar
  227. 227.
    Okuro PK, Thomazini M, Balieiro JCC, Liberal RDCO, Fávaro-Trindade CS (2013) Co- encapsulation of Lactobacillus acidophilus with inulin or polydextrose in solid lipid microparticles provides protection and improves stability. Food Res Int 53:96–103CrossRefGoogle Scholar
  228. 228.
    Ortakci F, Sert S (2012) Stability of free and encapsulated Lactobacillus acidophilus ATCC 4356 in yogurt and in an artificial human gastric digestion system. J Dairy Sci 95:6918–6925CrossRefGoogle Scholar
  229. 229.
    Otake K, Imura T, Sakai H, Abe M (2001) Development of a new preparation method of liposomes using supercritical carbon dioxide. Langmuir 17:3898–3901CrossRefGoogle Scholar
  230. 230.
    Özer B, Kirmaci HA, Senel E, Atamer M, Hayaloglu A (2009) Improving the viability of Bifidobacterium bifidum BB-12 and Lactobacillus acidophilus LA-5 in white-brined cheese by microencapsulation. Int J Dairy Technol 19:22–29CrossRefGoogle Scholar
  231. 231.
    Özer B, Uzun YS, Kirmaci HA (2008) Effect of microencapsulation on viability of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-12 during Kasar cheese ripening. Int J Dairy Technol 61:237–244CrossRefGoogle Scholar
  232. 232.
    Paques JP, Sagis LMC, van Rijn CJM, van der Linden E (2014) Nanospheres of alginate prepared through w/o emulsification and internal gelation with nanoparticles of CaCO3. Food Hydrocoll 40:182–188CrossRefGoogle Scholar
  233. 233.
    Paques JP, van der Linden E, van Rijn CJM, Sagis LMC (2013) Alginate submicron beads prepared through w/o emulsification and gelation with CaCl2 nanoparticles. Food Hydrocoll 31:428–434CrossRefGoogle Scholar
  234. 234.
    Paques JP, van der Linden E, van Rijn CJM, Sagis LMC (2014) Preparation methods of alginate nanoparticles. Adv Colloid Interface Sci 209:163–171CrossRefGoogle Scholar
  235. 235.
    Paramera EI, Konteles SJ, Karathanos VT (2010) Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chem 125:892–902CrossRefGoogle Scholar
  236. 236.
    Paramera EI, Konteles SJ, Karathanos VT (2011) Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, b-cyclodextrin and modified starch. Food Chem 125:913–922CrossRefGoogle Scholar
  237. 237.
    Paramera EI, Konteles SJ, Karathanos VT (2011) Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chem 125:892–902CrossRefGoogle Scholar
  238. 238.
    Patil YP, Jadhav S (2014) Novel methods for liposome preparation. Chem Phys Lipids 177:8–18CrossRefGoogle Scholar
  239. 239.
    Pedroso DL, Thomazini M, Heinemann RJB, Favaro-Trindade CS (2012) Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. Int Dairy J 26:127–132CrossRefGoogle Scholar
  240. 240.
    Peng C, Zhao SQ, Zhang J, Huang GY, Chen LY, Zhao FY (2014) Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chem 165:560–568CrossRefGoogle Scholar
  241. 241.
    Peng H, Li W, Ning F, Yao L, Luo M, Zhu X, Zhao Q, Xiong H (2014) Amphiphilic chitosan derivatives-based liposomes: synthesis, development, and properties as a carrier for sustained release of salidroside. J Agric Food Chem 62:626–633CrossRefGoogle Scholar
  242. 242.
    Pérez de Diego Y, Wubbolts FE, Witkamp GJ, Jansens PJ (2004) Improved PCA process for the production of nano- and mictroparticles of polymers. AIChE J 50:2408–2417CrossRefGoogle Scholar
  243. 243.
    Pérez-Chabela ML, Lara-Labastida R, Rodriguez-Huezo E, Totosaus A (2013) Effect of spray drying encapsulation of thermotolerant lactic acid bacteria on meat batters properties. Food Bioprocess Technol 6:1505–1515CrossRefGoogle Scholar
  244. 244.
    Perrechil FA, Cunha RL (2013) Stabilization of multilayered emulsions by sodium caseinate and k-carrageenan. Food Hydrocoll 30:606–613CrossRefGoogle Scholar
  245. 245.
    Perrechil FA, Sato ACK, Cunha RL (2011) κ-Carrageenan–sodium caseinate microgel production by atomization: critical analysis of the experimental procedure. J Food Eng 104:123–133CrossRefGoogle Scholar
  246. 246.
    Perrett S, Golding M, Williams WP (1991) A simple method for the preparation of liposomes for pharmaceutical applications: characterization of the liposomes. J Pharm Pharmacol 43:154–161CrossRefGoogle Scholar
  247. 247.
    Petreska-Ivanovska T, Petrushevska-Tozi L, Grozdanov A, Petkovska R, Hadjieva J, Popovski E, Stafilov T, Mladenovska K (2014) From optimization of synbiotic microparticles prepared by spray-drying to development of new functional carrot juice. doi: 10.2298/CICEQ130218036P
  248. 248.
    Petrovic T, Nedovic V, Dimitrijevic-Brankovic S, Bugarski B, Lacroix C (2007) Protection of probiotic microorganisms by microencapsulation. Chem Ind Chem Eng Q 13:169–174CrossRefGoogle Scholar
  249. 249.
    Pham-Hoang BN, Romero-Guido C, Phan-Thi H, Waché Y (2013) Encapsulation in a natural, preformed, multi-component and complex capsule: yeast cells. Appl Microbiol Biotechnol 97:6635–6645CrossRefGoogle Scholar
  250. 250.
    Ponce Cevallos PA, Buera MP, Elizalde BE (2010) Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: effect of interactions with water on complex stability. J Food Eng 99:70–75CrossRefGoogle Scholar
  251. 251.
    Pool H, Mendoza S, Xiao H, McClements DJ (2013) Encapsulation and release of hydrophobic bioactive components in nanoemulsion-based delivery systems: impact of physical form on quercetin bioaccessibility. Food Funct 4:162–174CrossRefGoogle Scholar
  252. 252.
    Prata AS, Maudhuit A, Boillereaux L, Poncelet D (2012) Development of a control system to anticipate agglomeration in fluidised bed coating. Powder Technol 224:168–174CrossRefGoogle Scholar
  253. 253.
    Pravilović RN, Radunović VS, Bošković-Vragolović NM, Bugarski BM, Pjanović RV (2014) The influence of membrane composition on the release of polyphenols from liposomes. Hem Ind. doi: 10.2298/HEMIND140220060P Google Scholar
  254. 254.
    Prusse U, Bilancetti L, Bucko M, Bugarski B, Bukowski J, Gemeiner P et al (2008) Comparison of different technologies for alginate beads production. Chem Pap 62:364–374CrossRefGoogle Scholar
  255. 255.
    Raileanu M, Todan L, Voicescu M, Ciuculescu C, Maganu M (2013) A way for improving the stability of the essential oils in an environmental friendly formulation. Mater Sci Eng, C 33:3281–3288CrossRefGoogle Scholar
  256. 256.
    Ramirez-Santiago C, Lobato-Calleros C, Espinosa-Andrews H, Vernon-Carter EJ (2012) Viscoelastic properties and overall sensory acceptability of reduced-fat Petite-Suisse cheese made by replacing milk fat with complex coacervate. Dairy Sci Technol 92:383–398CrossRefGoogle Scholar
  257. 257.
    Rao J, McClements DJ (2011) Food-grade microemulsions, nanoemulsions and emulsions: fabrication from sucrose monopalmitate and lemon oil. Food Hydrocoll 25:1413–1423CrossRefGoogle Scholar
  258. 258.
    Rao J, McClements DJ (2012) Food-grade microemulsions and nanoemulsions: role of oil phase composition on formation and stability. Food Hydrocoll 29:326–334CrossRefGoogle Scholar
  259. 259.
    Rao J, McClements DJ (2012) Impact of lemon oil composition on formation and stability of model food and beverage emulsions. Food Chem 134:749–757CrossRefGoogle Scholar
  260. 260.
    Rashidinejad A, Birch EJ, Sun-Waterhouse D, Everett DW (2014) Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chem 156:176–183CrossRefGoogle Scholar
  261. 261.
    Ribeiro Dos Santos I, Richard J, Thies C, Pech B, Benoit JP (2003) A supercritical fluidbased coating technology. 3: preparation and characterization of bovine serum albumin particles coated with lipids. J Microencapsul 20:110–128CrossRefGoogle Scholar
  262. 262.
    Ribeiro Dos Santos I, Thies C, Richard J, Le Meurlay D, Gajan V, VandeVelde V, Benoit JP (2003) A supercritical fluid-based coating technology. 2: solubility considerations. J Microencapsul 20:97–109CrossRefGoogle Scholar
  263. 263.
    Righetto AM, Netto FM (2005) Effect of encapsulation materials on water sorption, glass transition, and stability of juice from immature acerole. Int J Food Prop 8:337–346CrossRefGoogle Scholar
  264. 264.
    Roberfroid MB (2000) An European consensus of scientific concepts of functional foods. Nutrition 16:689–691CrossRefGoogle Scholar
  265. 265.
    Rocha GA, Fávaro-Trindade CS, Ferreira Grosso CR (2012) Microencapsulation of lycopene by spray drying: characterization, stability and application of microcapsules. Food Bioprod Process 90:37–42CrossRefGoogle Scholar
  266. 266.
    Rocha-Selmi GA, Bozza FT, Thomazini M, Bolini HMA, Fávaro-Trindade CS (2013) Microencapsulation of aspartame by double emulsion followed by complex coacervation to provide protection and prolong sweetness. Food Chem 139:72–78CrossRefGoogle Scholar
  267. 267.
    Rocha-Selmi GA, Fávaro-Trindade CS, Ferreira Grossoa CR (2013) Morphology, stability, and application of lycopene microcapsules produced by complex coacervation. J Chem. doi: 10.1155/2013/982603 Google Scholar
  268. 268.
    Rocha-Selmi GA, Theodoro AC, Thomazini M, Bolini HMA, Favaro-Trindade CS (2013) Double emulsion stage prior to complex coacervation process for microencapsulation of sweetener sucralose. J Food Eng 119:28–32CrossRefGoogle Scholar
  269. 269.
    Rodríguez-Rojo S, López-Valdezate N, Cocero MJ (2008) Residence time distribution studies of high pressure fluidized bed of microparticles. J Supercrit Fluids 44:433–440CrossRefGoogle Scholar
  270. 270.
    Rojas EEG, Coimbra JSR, Minim LA, Freitas JF (2007) Cholesterol removal in liquid egg yolk using high methoxyl pectins. Carbohydr Polym 69:72–78CrossRefGoogle Scholar
  271. 271.
    Rosenkranz K, Kasper MM, Werther J, Brunner G (2008) Encapsulation of irregularly shaped solid forms of proteins in a high-pressure fluidized bed. J Supercrit Fluids 46:351–357CrossRefGoogle Scholar
  272. 272.
    Rozman B, Gasperlin M (2007) Stability of vitamins C and E in topical microemulsions for combined antioxidant therapy. Drug Delivery 14:235–245CrossRefGoogle Scholar
  273. 273.
    Rukmini A, Raharjo S, Hastuti P, Supriyadi S (2012) Formulation and stability of water-in-virgin coconut oil microemulsion using ternary food grade nonionic surfactants. Int Food Res J 9:259–264Google Scholar
  274. 274.
    Saberi AH, Fang Y, McClements DJ (2013) Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification. J Colloid Interface Sci 391:95–102CrossRefGoogle Scholar
  275. 275.
    Sagalowicz L, Leser ME (2010) Delivery for liquid food products. Curr Opin Colloid Interface Sci 15:61–72CrossRefGoogle Scholar
  276. 276.
    Saleh K, Steinmetz D, Hemati M (2003) Experimental study and modelling of fluidized bed coating and agglomeration. Powder Technol 130:116–123CrossRefGoogle Scholar
  277. 277.
    Samperio C, Boyer R, Eigel WN III, Holland KW, McKinney JS, O’Keefe SF, Smith R, Marcy JE (2010) Enhancement of plant essential oils’ aqueous solubility and stability using alpha and beta cyclodextrin. J Agric Food Chem 58:12950–12956CrossRefGoogle Scholar
  278. 278.
    Sandoval-Castilla O, Lobato-Calleros C, García-Galindo HS, Alvarez-Ramírez J, Vernon-Carter EJ (2010) Textural properties of alginate–pectin beads and survivability of entrapped Lb. Casei in simulated gastrointestinal conditions and in yoghurt. Food Res Int 43:111–117CrossRefGoogle Scholar
  279. 279.
    Santana RC, Perrechil FA, Cunha RL (2013) High- and low-energy emulsifications for food applications: a focus on process parameters. Food Eng Rev 5:107–122CrossRefGoogle Scholar
  280. 280.
    Santo IE, Campardelli R, Albuquerque EC, de Melo SV, Della Porta G, Reverchon E (2014) Liposomes preparation using a supercritical fluid assisted continuous process. Chem Eng J 249:153–159CrossRefGoogle Scholar
  281. 281.
    Santos AB, Favaro-Trindade CS, Grosso CRF (2005) Preparo e caracterização de microcápsulas de oleoresina de páprica obtidas por atomização. Ciênc Tecnol Aliment 25:322–326CrossRefGoogle Scholar
  282. 282.
    dos Santos C, Pilar Buera M, Florencia Mazzobre M (2012) Influence of ligand structure and water interactions on the physical properties of b-cyclodextrins complexes. Food Chem 132:2030–2036Google Scholar
  283. 283.
    Sathyabama S, Ranjith Kumar M, Bruntha Devi P, Vijayabharathi R, Brindha Priyadharisini V (2014) Co-encapsulation of probiotics with prebiotics on alginate matrix and its effect on viability in simulated gastric environment. LWT Food Sci Technol 57:419–425CrossRefGoogle Scholar
  284. 284.
    Schell D, Beermann C (2014) Fluidized bed microencapsulation of Lactobacillus reuteri with sweet whey and shellac for improved acid resistance and in vitro gastro-intestinal survival. Food Res Int 62:308–314CrossRefGoogle Scholar
  285. 285.
    Schmitt C, Sanchez C, Desobry-Banon S, Hardy J (1998) Structure and technofunctional properties of protein-polysaccharide complexes: a review critical reviews in food science and nutrition 38:689–753Google Scholar
  286. 286.
    Schreiber R, Reinke B, Vogt C, Werther J, Brunner G (2003) High-pressure fluidized bed coating utilizing supercritical carbon dioxide. Powder Technol 138:31–38CrossRefGoogle Scholar
  287. 287.
    Seo EJ, Min SG, Choi MJ (2010) Release characteristics of freeze-dried eugenol encapsulated with b-cyclodextrin by molecular inclusion method. J Microencapsul 27:496–505CrossRefGoogle Scholar
  288. 288.
    Servais C, Jones R, Roberts I (2002) The influence of particle size distribution on the processing of food. J Food Eng 51:201–208CrossRefGoogle Scholar
  289. 289.
    Shank JL (1976) Encapsulating eg dyes, drugs, chemicals, adhesives etc—using microorganisms eg fungi, yeasts by forming large fat globules within cell wall. Patent US498208-BGoogle Scholar
  290. 290.
    Shao P, Zhang J, Fang Z, Sun P (2014) Complexing of chlorogenic acid with b-cyclodextrins: inclusion effects, antioxidative properties and potential application in grape juice. Food Hydrocoll 41:132–139CrossRefGoogle Scholar
  291. 291.
    Shariati A, Peters CJ (2003) Recent developments in particle design using supercritical fluids. Curr Opin Solid State Mater Sci 7:371–383CrossRefGoogle Scholar
  292. 292.
    Sharma R, Singh RB (2010) Bioactive foods and nutraceutical supplementation criteria in cardiovascular protection. Open Nutraceuticals J 3:141–153Google Scholar
  293. 293.
    Shi G, Rao L, Yu H, Xiang H, Yang H, Ji R (2008) Stabilization and encapsulation of photosensitive resveratrol within yeast cell. Int J Pharm 349:83–93CrossRefGoogle Scholar
  294. 294.
    Shi GR, Rao LQ, Yu HZ, Xiang H, Pen GP, Long S, Yang C (2007) Yeast-cell-based microencapsulation of chlorogenic acid as a water-soluble antioxidant. J Food Eng 80:1060–1067CrossRefGoogle Scholar
  295. 295.
    Shine AD, Gelb J (1998) Microencapsulation process using supercritical fluids. PCT WO 9815348 A1Google Scholar
  296. 296.
    Shu B, Yu W, Zhao Y, Liu X (2006) Study on microencapsulation of lycopene by spray-drying. J Food Eng 76:664–669CrossRefGoogle Scholar
  297. 297.
    Silva DF, Favaro-Trindade CS, Rocha GA, Thomazini M (2011) Microencapsulation of lycopene by gelatin–pectin complex coacervation. J Food Process Preserv 575:1–6Google Scholar
  298. 298.
    Silva F, Figueiras A, Gallardo E, Nerín C, Domingues FC (2014) Strategies to improve the solubility and stability of stilbene antioxidants: a comparative study between cyclodextrins and bile acids. Food Chem 145:115–125CrossRefGoogle Scholar
  299. 299.
    da Silva Malheiros P, Daroit DJ, Brandelli A (2010) Food applications of liposome encapsulated antimicrobial peptides. Trends Food Sci Technol 21:284–292CrossRefGoogle Scholar
  300. 300.
    da Silva Malheiros P, Sant’Anna V, Barbosa MS, Brandelli A, Franco BDGM (2012) Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth in Minas frescal cheese. Int J Food Microbiol 156:272–277CrossRefGoogle Scholar
  301. 301.
    da Silva Pedrini MR, Dupont S, de Anchieta Câmara A Jr, Beney L, Gervais P (2014) Osmoporation: a simple way to internalize hydrophilic molecules into yeast. Appl Microbiol Biotechnol 98:1271–1280CrossRefGoogle Scholar
  302. 302.
    Smith A, Jaime-Fonseca M, Grover LM, Bakalis S (2010) Alginate-loaded liposomes can protect encapsulated alkaline phosphatase functionality when exposed to gastric pH. J Agric Food Chem 58:4719–4724CrossRefGoogle Scholar
  303. 303.
    Soares BMC, Gamarra FMC, Paviani LC, Gonçalves LAG, Cabral FA (2007) Solubility of triacylglycerols in supercritical carbon dioxide. J Supercrit Fluids 43:25–31CrossRefGoogle Scholar
  304. 304.
    Sohail A, Turner MS, Prabawati EK, Coombes AGA, Bhandari B (2012) Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM encapsulated using a novel impinging aerosol method in fruit food products. Int J Food Microbiol 157:162–166CrossRefGoogle Scholar
  305. 305.
    Sosa MV, Rodríguez-Rojo S, Matte F, Cismondi M, Cocero MJ (2011) Green tea encapsulation by means of high pressure antisolvent coprecipitation. J Supercrit Fluids 56:304–311CrossRefGoogle Scholar
  306. 306.
    Souilem S, Kobayashi I, Neves MA, Sayadi S, Ichikawa S, Nakajima M (2014) Preparation of monodisperse food-grade oleuropein-loaded w/o/w emulsions using microchannel emulsification and evaluation of their storage stability. Food Bioprocess Technol 7:2014–2027CrossRefGoogle Scholar
  307. 307.
    Sparks DL, Hernández R, Estévez LA (2008) Evaluation of density-based models for the solubility of solids in supercritical carbon dioxide and formulation a new model. Chem Eng Sci 63:4292–4301CrossRefGoogle Scholar
  308. 308.
    Spigno G, Donsì F, Amendola D, Sessa M, Ferrari G, De Faveri DM (2013) Nanoencapsulation systems to improve solubility and antioxidant efficiency of a grape marc extract into hazelnut paste. J Food Eng 114:207–214CrossRefGoogle Scholar
  309. 309.
    Spyropoulos F, Lloyd D, Hancocks RD, Pawlik AK (2014) Advances in mem-brane emulsification. Part A: recent developments in processing aspects andmicrostructural design approaches. J Food Sci Eng 94:613–627CrossRefGoogle Scholar
  310. 310.
    Srivastava Y, Semwal AD, Sharma K (2013) Application of various chemical and mechanical microencapsulation techniques in food sector—a review. Int J of Food Ferment Technol 3:1–13CrossRefGoogle Scholar
  311. 311.
    Stojanovic R, Belscak-Cvitanovic A, Manojlovic V, Komes D, Nedovic V, Bugarski B (2012) Encapsulation of thyme (Thymus serpyllum L.) aqueous extract in calcium alginate beads. J Sci Food Agric 92:685–696CrossRefGoogle Scholar
  312. 312.
    Sun P, Zeng M, He Z, Qin F, Chen PJ (2013) Controlled release of fluidized bed-coated menthol powder with a gelatin coating. Drying Technol 31:13–14CrossRefGoogle Scholar
  313. 313.
    Sun-Waterhouse D, Wadhwa SS (2013) Industry-relevant approaches for minimising the bitterness of bioactive compounds in functional foods: a review. Food Bioprocess Technol 6:607–627CrossRefGoogle Scholar
  314. 314.
    Swisher HE (1957) Solid flavouring composition and method of preparing same. US Patent no. 2, 809-895. Sunkist Growers Inc., Sherman OaksGoogle Scholar
  315. 315.
    Szejtli J, Szente L (2005) Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur J Pharm Biopharm 61:115–125CrossRefGoogle Scholar
  316. 316.
    Szente L, Szejtli J (2004) Cyclodextrins as food ingredients. Trends Food Sci Technol 15:137–142CrossRefGoogle Scholar
  317. 317.
    Tan C, Xia S, Xue J, Xie J, Feng B, Zhang X (2013) Liposomes as vehicles for lutein: preparation, stability, liposomal membrane dynamics, and structure. J Agric Food Chem 61:8175–8184CrossRefGoogle Scholar
  318. 318.
    Tan HL, Chan WL, Heng SWP (2009) Alginate/starch composites as wall material to achieve microencapsulation with high oil loading. J Microencapsul 26:263–271CrossRefGoogle Scholar
  319. 319.
    Tchakalova V, Bailly C, Fieber W (2014) Food-grade bicontinuous microemulsions. Flavour Fragr J 29:67–74CrossRefGoogle Scholar
  320. 320.
    Teunou E, Poncelet D (2005) In: Onwulata C (ed) Encapsulated and powdered foods. CRC Press, Boca RatonGoogle Scholar
  321. 321.
    Thakur R, Gupta RB (2006) Production of hydrocortisone micro- and nano-particlesusing supercritical anti-solvent with enhanced mass transfer. Chem Eng Commun 193:293–305CrossRefGoogle Scholar
  322. 322.
    Thies C (2005) A survey of microencapsulation processes. In: Benita S (ed) Microencapsulation. Marcel Dekker Inc, New YorkGoogle Scholar
  323. 323.
    Thies C, Ribeiro dos Santos I, Richard J, Vande Velde V, Rolland H, Benoit JP (2003) A supercritical fluid-based coating technology: process considerations. J Microencapsul 8:87–96CrossRefGoogle Scholar
  324. 324.
    Thote AJ, Gupta RB (2005) Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release. Nanomed Nanotechnol Biol Med 1:85–90Google Scholar
  325. 325.
    Tiyaboonchai W, Tungpradit W, Plianbangchang P (2007) Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. Int J Pharm 337:299–306CrossRefGoogle Scholar
  326. 326.
    Tomasko DL, Li H, Lui D, Han X, Wingert MJ, Lee LJ, Koelling KW (2003) A review of CO2 applications in the processing of polymers. Ind Eng Chem Res 42:6431–6456CrossRefGoogle Scholar
  327. 327.
    Tonon RV, Brabet C, Hubinger MD (2008) Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. J Food Eng 88:411–418CrossRefGoogle Scholar
  328. 328.
    Trifković KT, Milašinović NZ, Djordjević VB, Kalagasidis Krušić MT, Knežević-Jugović ZD, Nedović VA, Bugarski BM (2014) Chitosan microbeads for encapsulation of thyme (Thymus serpyllum L.) polyphenols. Carbohydr Polym 111:901–907CrossRefGoogle Scholar
  329. 329.
    Urbanska AM, Bhathena J, Prakash S (2007) Live encapsulated Lactobacillus acidophilus cells in yogurt for therapeutic oral delivery: preparation and in vitro analysis of alginate–chitosan microcapsules. Can J Physiol Pharmacol 85:884–893CrossRefGoogle Scholar
  330. 330.
    Vanaja K, Wahl MA, Bukarica L, Heinle H (2013) Liposomes as carriers of the lipid soluble antioxidant resveratrol: evaluation of amelioration of oxidative stress by additional antioxidant vitamin. Life Sci 93:917–923CrossRefGoogle Scholar
  331. 331.
    Varona S, Kareth, Cocero MJ (2009) Encapsulation of essentials oils using biopolymers for their use in ecological agriculture. In: Proceedings of 9th international symposium on supercritical fluids, Arcachon, FranceGoogle Scholar
  332. 332.
    Velikov PK, Pelan E (2008) Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter 4:1964–1980CrossRefGoogle Scholar
  333. 333.
    Vilela JAP, Perrechil FDA, Picone CSF, Sato ACK, da Cunha RL (2015) Preparation, characterization and in vitro digestibility of gellan and chitosan–gellan microgels. Carbohydr Polym 117:54–62CrossRefGoogle Scholar
  334. 334.
    Vladisavljević GT, Kobayashi I, Nakajima M (2012) Production of uniform dropletsusing membrane, microchannel and microfluidic emulsification devices. Microfluid Nanofluid 13:151–178CrossRefGoogle Scholar
  335. 335.
    Vladisavljevic GT, Laouini A, Charcosset C, Fessi H, Bandulasena HCH, Holdich RG (2014b) Production of liposomes using microengineered membrane and co-flow microfluidic device. Colloids Surfaces A Physicochem Eng Aspects. doi:10.1016/j.colsurfa.2014.03.016Google Scholar
  336. 336.
    Vladisavljević GT, Shum HC, Weitz DA (2012) Control over the shell thickness of core/shell drops in three-phase glass capillary devices. Prog Colloid Polym Sci 139:115–118Google Scholar
  337. 337.
    Vladisavljević GT, Wang B, Dragosavac MM, Holdich RG (2014) Production of food-grade multiple emulsions with high encapsulationyield using oscillating membrane emulsification. Colloids Surf A 458:78–84CrossRefGoogle Scholar
  338. 338.
    Vladisavljević GT, Williams RA (2006) Manufacture of large uniform droplets usingrotating membrane emulsification. J Colloid Interface Sci 299:369–402Google Scholar
  339. 339.
    de Vos P, Faas MM, Spasojevic M, Sikkema J (2010) Review: encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 20:292–302CrossRefGoogle Scholar
  340. 340.
  341. 341.
    Wang J, Cao Y, Sun B, Wang C (2011) Physicochemical and release characterisation of garlic oil-β cyclodextrin inclusion complexes. Food Chem 127:1680–1685CrossRefGoogle Scholar
  342. 342.
    Wang W, Waterhouse GIN, Sun-Waterhouse D (2013) Co-extrusion encapsulation of canola oil with alginate: effect of quercetin addition to oil core and pectin addition to alginate shell on oil stability. Food Res Int 54:837–851CrossRefGoogle Scholar
  343. 343.
    Wang Y, Ye H, Zhou C, Lv F, Bie X, Lu Z (2012) Study on the spray-drying encapsulation of lutein in the porous starch and gelatin mixture. Eur Food Res Technol 234:157–163CrossRefGoogle Scholar
  344. 344.
    Waraho T, Cardenia V, Rodriguez-Estrada MT, McClements DJ, Decker EA (2009) Prooxidant mechanisms of free fatty acids in stripped soybean oil-in-water emulsions. J Agric Food Chem 57:7112–7117CrossRefGoogle Scholar
  345. 345.
    Waterhouse GIN, Wang W, Sun-Waterhouse D (2014) Stability of canola oil encapsulated by co-extrusion technology: effect of quercetin addition to alginate shell or oil core. Food Chem 142:27–38CrossRefGoogle Scholar
  346. 346.
    Weidner E (2009) High pressure micronization for food applications. J Supercrit Fluids 47:556–565CrossRefGoogle Scholar
  347. 347.
    Weidner E, Wiesmet V, Knez Z (1997) Phase equilibrium (solid-liquid- gas) in polyethyleneglycol-carbon dioxide systems. J Supercrit Fluids 10:139–147CrossRefGoogle Scholar
  348. 348.
    Weinbreck F, Nieuwenhuijse H, Robijn GW, de Kruif CG (2004) Complexation of whey proteins with carrageenan. J Agric Food Chem 52:3550–3555CrossRefGoogle Scholar
  349. 349.
    Weiss J, Decker EA, McClements DJ, Kristbergsson K, Helgason T, Awad T (2008) Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys 3:146–154CrossRefGoogle Scholar
  350. 350.
    Weiss J, Muschiolik G (2007) Factors affecting the droplet size of water-in-oil emulsions (w/o) and the oil globule size in water-in-oil-in-water emulsions (W/O/W). J Dispersion Sci Technol 28:703–716CrossRefGoogle Scholar
  351. 351.
    Whelehan M, Marison IW (2011) Microencapsulation by dripping and jet break up. BRG Newsletter e Bioencapsulation Innovations (September), 4–10. http://bioencapsulation.net/
  352. 352.
    Wildman REC, Kelley M (2007) Nutraceuticals and Functional Foods. In: Wildman RCE (ed) Handbook of nutraceuticals and functional foods, 2nd edn. Taylor and Francis, Boca Raton, pp 1–22Google Scholar
  353. 353.
    Xia F, Hu D, Jin H, Zhao Y, Liang J (2012) Preparation of lutein proliposomes by supercritical anti-solvent technique. Food Hydrocolloids 26:456–463CrossRefGoogle Scholar
  354. 354.
    Yang S, Mao X-Y, Li F-F, Zhang D, Leng X-J, Ren F-Z, Teng G-X (2012) The improving effect of spray-drying encapsulation process on the bitter taste and stability of whey protein hydrolysate. Eur Food Res Technol 235:91–97CrossRefGoogle Scholar
  355. 355.
    Yang Y, Leser ME, Sher AA, McClements DJ (2013) Formation and stability of emulsions using a natural small molecule surfactant: quillaja saponin (Q-Naturale®). Food Hydrocoll 30:589–596CrossRefGoogle Scholar
  356. 356.
    Yang Z, Peng Z, Li J, Li S, Kong L, Li P, Wang Q (2014) Development and evaluation of novel flavour microcapsules containing vanilla oil using complex coacervation approach. Food Chem 145:272–277CrossRefGoogle Scholar
  357. 357.
    Yarlagadda AB, Wilkinson MG, Ryan SP, Doolan IA, O’Sullivan MG, Kilcawley KN (2014) Utilisation of a cell-free extract of lactic acid bacteria entrapped in yeast to enhanceflavour development in Cheddar cheese. Int J Dairy Technol 67:21–30CrossRefGoogle Scholar
  358. 358.
    Yoshida PA, Yokota D, Foglio MA, Rodrigues RAF, Pinho SC (2010) Liposomes incorporating essential oil of Brazilian cherry (Eugenia uniflora L.): characterization of aqueous dispersions and lyophilized formulations. J Microencapsulation 27:416–425CrossRefGoogle Scholar
  359. 359.
    Yu ZR, Singh B, Rizvi SSH (1994) Solubilities of fatty acids, fatty acid esters, triglycerides, and fats and oils in supercritical carbon dioxide. J Supercrit Fluids 7:51–59CrossRefGoogle Scholar
  360. 360.
    Yuan C, Jin Z, Li X (2008) Evaluation of complex forming ability of hydroxypropyl-β-cyclodextrins. Food Chem 106:50–55CrossRefGoogle Scholar
  361. 361.
    Yuan C, Lu Z, Jin Z (2014) Characterization of an inclusion complex of ethyl benzoate with hydroxypropyl-β-cyclodextrin. Food Chem 152:140–145CrossRefGoogle Scholar
  362. 362.
    Zabihi F, Xin N, Li S, Jia J, Cheng T, Zhao Y (2014) Polymeric coating of fluidizing nano-curcumin via anti-solvent supercritical method for sustained release. J Supercrit Fluids 89:99–105CrossRefGoogle Scholar
  363. 363.
    Zheng Y, Chow AH (2009) Production and characterization of a spray-dried hydroxypropyl-beta-cyclodextrin/quercetin complex. Drug Dev Ind Pharm 35:727–734CrossRefGoogle Scholar
  364. 364.
    Ziegler G, Hogg R (1999) Particle size reduction. In: Beckett ST (ed) Industrial chocolate manufacture and use. Chapman and Hall, New YorkGoogle Scholar
  365. 365.
    Zimet P, Rosenberg D, Livney YD (2011) Re-assembled casein micelles and casein nanoparticles as nano-vehicles for omega-3 polyunsatturated fatty acids. Food Hydrocoll 25:1270–1276CrossRefGoogle Scholar
  366. 366.
    Zoet FD, Grandia J, Sibeijn M (2011) Encapsulated fat soluble vitamin. NL patent 050668Google Scholar
  367. 367.
    Zou LQ, Liu W, Liu WL, Liang RH, Li T, Liu CM, Cao YL, Niu J, Liu Z (2014) Characterization and bioavailability of tea polyphenol nanoliposome prepared by combining an ethanol injection method with dynamic high-pressure microfluidization. J Agric Food Chem 62:934–941CrossRefGoogle Scholar
  368. 368.
    Zou Y, Lee HY, Seo YC, Ahn J (2012) Enhanced antimicrobial activity of nisin-loaded liposomal nanoparticles against foodborne pathogens. J Food Sci 77:165–170CrossRefGoogle Scholar
  369. 369.
    Zuidam NJ, Heinrich J (2010) Encapsulation of aroma. In: Zuidam NJ, Nedovic VA (eds) Encapsulation technologies for food active ingredients and food processing. Springer, LondonCrossRefGoogle Scholar
  370. 370.
    Zuidam NJ, Shimoni E (2010) In: Zuidam NJ, Nedović VA (eds) Encapsulation technologies for active food ingredients and food processing. Springer, LondonCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Verica Đorđević
    • 1
  • Bojana Balanč
    • 1
  • Ana Belščak-Cvitanović
    • 2
  • Steva Lević
    • 3
  • Kata Trifković
    • 1
  • Ana Kalušević
    • 3
  • Ivana Kostić
    • 1
  • Draženka Komes
    • 2
  • Branko Bugarski
    • 1
  • Viktor Nedović
    • 3
    Email author
  1. 1.Department of Chemical Engineering, Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  2. 2.Department of Food Engineering, Faculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia
  3. 3.Department of Food Technology and Biochemistry, Faculty of AgricultureUniversity of BelgradeBelgrade-ZemunSerbia

Personalised recommendations