Advertisement

Food Engineering Reviews

, Volume 7, Issue 1, pp 11–32 | Cite as

Radiofrequency Identification and Surface Acoustic Wave Technologies for Developing the Food Intelligent Packaging Concept

  • Antonio López-Gómez
  • Fernando Cerdán-Cartagena
  • Juan Suardíaz-Muro
  • María Boluda-Aguilar
  • María Esther Hernández-Hernández
  • María Angeles López-Serrano
  • Juan López-Coronado
Review Article

Abstract

The food intelligent packaging (IP) technologies are reviewed with a particular emphasis on the possibilities of radiofrequency identification (RFID) and surface acoustic wave (SAW) technologies for developing the food IP concept. Passive RFID and SAW technologies are the more promising ones to achieve a food IP that can wirelessly communicate the food quality to the different agents of the food chain. However, some drawbacks and cost of these technologies are limiting their massive use in food IP. This is the reason why a lot of research works are being currently performed that focus on increasing functionality (e.g., enabling the tag antenna as a sensing device) and reducing costs of components and materials of these RFID and SAW systems. Furthermore, benefits can be also achieved by means of integrating the RFID, SAW, and other sensing technologies. The RFID and SAW technologies can be embedded in a wireless sensor network (WSN), and the corresponding tags and readers can build more intelligent networks by sharing the sensing, logic, and transmission capabilities of the sensor networks. The above two technologies can be integrated in two different ways: sensor-enabled tags—RFID or SAW (or RFID or SAW sensor tags)—and RFID and/or SAW-embedded WSN. The application of these technologies on secondary packages, as the paperboard packages, can dilute the costs of application on primary packaging and allow the massive use of these technologies in the food supply chain.

Keywords

Food packaging Sensing and communicating functions Sensor-enabled RFID tags Sensor-enabled SAW tags Mathematical model 

Notes

Acknowledgments

This review has been written during the realization of the ADFRESH Project (2011–2014), funded by a group of Spanish Agri-Food Companies, and the Center for Industrial Technological Development (CDTI, Spanish Ministry of Economy and Competitiveness).

References

  1. 1.
    Abad E, Zampolli S, Marco S, Scorzoni A, Mazzolai B, Juarros A, Gómez D, Elmi I, Cardinali GC, Gómez JM, Palacio F, Cicioni M, Mondini A, Becker T, Sayhan I (2007) Flexible tag microlab development: gas sensors integration in RFID flexible tags for food logistic. Sens Actuators B 127:2–7Google Scholar
  2. 2.
    Abad E, Palacio F, Nuin M, Zárate A, Juarros A, Gómez JM, Marco S (2009) RFID smart tag for traceability and cold chain monitoring of foods: demonstration in an intercontinental fresh fish logistic chain. J Food Eng 93(4):394–399Google Scholar
  3. 3.
    Abarca A, De la Fuente M, Abril JM, García A, Pérez-Ocón F (2009) Intelligent sensor for tracking and monitoring of blood temperature and hemoderivatives used for transfusions. Sens Actuators A 152(2):241–247Google Scholar
  4. 4.
    ABI Research (2014) RFID-enabled food safety and traceability systems. http://www.abiresearch.com. Accessed 11 Jan 2014
  5. 5.
    Afzal A, Iqbal N, Mujahid A, Schirhagl R (2013) Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: a review. Anal Chim Acta 787:36–49Google Scholar
  6. 6.
    Ahvenainen R (2003) Novel food packaging techniques. Woodhead Publishing Ltd., CambridgeGoogle Scholar
  7. 7.
  8. 8.
    Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput Netw 38(4):393–422Google Scholar
  9. 9.
    Along K, Chenrui Z, Luo Z, Xiaozheng L, Tao H (2010) SAW RFID enabled multi-functional sensors for food safety applications. In: RFID-technology and applications (RFID-TA), 2010 IEEE international conference on IEEE, pp 200–204Google Scholar
  10. 10.
    Amin Y, Prokkola S, Shao B, Hallstedt J, Tenhunen H, Zheng LR (2009) Inkjet printed paper based quadrate bowtie antennas for UHF RFID tags. In: Advanced communication technology, 11th IEEE international conference ICACT 2009, vol 1, pp 109–112Google Scholar
  11. 11.
    Amin E, Bhuiyan M, Karmakar N, Winther-Jensen B (2014) Development of a low cost printable chipless rfid humidity sensor. IEEE Sens J 14(1):140–149Google Scholar
  12. 12.
    Barge P, Gay P, Merlino V, Tortia C (2014) Item-level radio-frequency identification for the traceability of food products: application on a dairy product. J Food Eng 125:119–130Google Scholar
  13. 13.
    Berkenpas E, Bitla S, Millard P, Pereira da Cunha M (2004) Pure shear horizontal SAW biosensor on langasite. IEEE Trans Ultrason Ferroelectr Freq Contl 51(11):1404–1411Google Scholar
  14. 14.
    Berkenpas E, Millard P, Pereira Da Cunha M (2006) Detection of Escherichia coli O157:H7 with langasite pure shear horizontal surface acoustic wave sensors. Biosens Bioelectron 21:2255–2262Google Scholar
  15. 15.
    Bhattacharyya R, Floerkemeier C, Sarma S (2010) Low-cost, ubiquitous RFID-tag-antenna-based sensing. Proc IEEE 98(9):1593–1600Google Scholar
  16. 16.
    Bradley EL, Castle L, Chaudhry Q (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol 22(11):604–610Google Scholar
  17. 17.
    Brandl M, Grabner J, Kellner K, Seifert F, Nicolics J, Grabner S, Grabner G (2009) A low-cost wireless sensor system and its application in dental retainers. IEEE Sens J 9(3):255–262Google Scholar
  18. 18.
    Bulst WE, Fischerauer G, Reindl L (2001) State of the art in wireless sensing with surface acoustic waves. IEEE Trans Ind Electron 48(2):265–271Google Scholar
  19. 19.
    Burnell J (2007a) Getting a read on RFID smart packaging. www.rfidupdate.com. Accessed 11 Jan 2014
  20. 20.
    Burnell J (2007b) New smart boxes provide alternative to RFID labels. www.rfidupdate.com. Accessed 11 Jan 2014
  21. 21.
    Butler P (2001) Smart packaging: intelligent packaging for food, beverages. Pharmaceuticals and household products. Mater World 9(3):11–13Google Scholar
  22. 22.
    Campbell CK (1998) Surface acoustic wave devices for mobile and wireless communications. Academic Press, WalthamGoogle Scholar
  23. 23.
    Campbell CK, Burgess JC (1991) Surface acoustic wave devices and their signal processing applications. J Acous Soc Am 89(3):1479–1480Google Scholar
  24. 24.
    Campbell CK, Edmonson PJ (2002) Wireless communication system using surface acoustic wave (SAW) single-phase unidirectional transducer (SPUDT) techniques. US Patent No. 6,462,698Google Scholar
  25. 25.
    Cartasegna D, Cito A, Conso F, Donida A, Grassi M, Malvasi L, Rescio G, Malcovati P (2009) Smart RFID label for monitoring the preservation conditions of food. In: Circuits and systems, ISCAS 2009 IEEE international symposium, pp 1161–1164Google Scholar
  26. 26.
    Cartasegna D, Conso F, Donida A, Grassi M, Picolli L, Rescio G, Malcovati P, Perretti G, Regnicoli GF (2011) Integrated microsystem with humidity, temperature and light sensors for monitoring the preservation conditions of food. In: Sensors 2011 IEEE conference, pp. 1859–1862Google Scholar
  27. 27.
    Chandler S (2003) Vision of the future for smart packaging for brand owners. In: Proceedings international conference on smart and intelligent packaging, Barcelona, Spain, October 28–29, pp 253–269Google Scholar
  28. 28.
    Chao CC, Yang JM, Jen WJ (2007) Determining technology trends and forecasts of RFID by a historical review and bibliometric analysis from 1991 to 2005. Technovation 27:268–279Google Scholar
  29. 29.
    Chaudhry Q, Castle L (2011) Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Technol 22(11):595–603Google Scholar
  30. 30.
    Chen L, Ba H, Heinzelman W, Cote A (2013) RFID range extension with low-power wireless edge devices. In: Computing, networking and communications (ICNC), 2013 IEEE international conference, pp. 524–528Google Scholar
  31. 31.
    Cho J, Shim Y, Kwon T, Choi Y, Pack S, Kim S (2007) SARIF: a novel framework for integrating wireless sensor and RFID networks. IEEE Wirel Commun 14(6):50–56Google Scholar
  32. 32.
    Conso F, Grassi M, Picolli L, Cartasegna D, Donida A, Rescio G, Regnicoli GF, Perretti G, Malcovati P (2014) A fully-integrated multi-sensor system for food tracing and quality certification providing temperature, light intensity, and humidity exposure history of samples. Sensor Lecture Notes Elect Eng 162:509–514Google Scholar
  33. 33.
    Corso CD, Csete ME, Dickherber A, Edmonson PJ, Hunt WD (2010) Acoustic wave sensor assembly utilizing a multi-element structure. US Patent No. 7,771,987Google Scholar
  34. 34.
    Costa C, Antonucci F, Pallottino F, Aguzzi J, Sarria D, Menesatti P (2013) A review on agri-food supply chain traceability by means of RFID technology. Food Bioprocess Technol 6(2):353–366Google Scholar
  35. 35.
    Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry—recent developments, risks and regulation. Trends Food Sci Technol 24(1):30–46Google Scholar
  36. 36.
    De Abreu DAP, Cruz JM, Losada PP (2012) Active and intelligent packaging for the food industry. Food Rev Int 28(2):146–187Google Scholar
  37. 37.
    EC (2009) EU guidance to the commission regulation on active and intelligent materials and articles intended to come into contact with food. European CommissionGoogle Scholar
  38. 38.
    Edmonson PJ, Hunt WD (2004) Surface acoustic wave sensor: attributes and advantages. In: Proceedings of radio and wireless IEEE conference, pp 47–50Google Scholar
  39. 39.
    Edmonson PJ, Hunt W, Campbell C (2006) Surface acoustic wave sensor or identification device with biosensing capability. Patent CA 2532835Google Scholar
  40. 40.
    EPCGEN2 (2014) Class 1 generation 2 UHF air interface protocol standard version:1.2.0 “Gen 2”. http://www.epcglobalinc.org/standards. Accessed 12 Jan 2014
  41. 41.
    EPCGlobal (2014) http://www.gs1.org/epcglobal. Accessed 11 Jan 2014
  42. 42.
    Fachberger R, Bruckner G, Hauser R, Reindl L (2006) Wireless SAW based high-temperature measurement systems. In: IEEE international frequency control symposium and exposition, pp 358–367Google Scholar
  43. 43.
  44. 44.
    Feng ZC, Chicone C (2003) A delay differential equation model for surface acoustic wave sensors. Sens Actuat A 104(2):171–178Google Scholar
  45. 45.
    Ferrer-Vidal A, Rida A, Basat S, Yang L, Tentzeris MM (2006) Integration of sensors and RFID’s on ultra-low-cost paper-based substrates for wireless sensor networks applications. In: 2nd IEEE workshop on wireless mesh networks, WiMesh 2006, pp 126–128Google Scholar
  46. 46.
    Fiddes LK, Yan N (2013) RFID tags for wireless electrochemical detection of volatile chemicals. Sens Actuators B 186:817–823Google Scholar
  47. 47.
    Fiddes LK, Chang J, Yan N (2014) Electrochemical detection of biogenic amines during food spoilage using an integrated sensing RFID Tag. Sens Actuat B 202:1298–1304Google Scholar
  48. 48.
    Finkenzeller K (2003) RFID handbook: fundamentals and applications in contactless smart cards and identification, 2nd edn. Wiley, ColoradoGoogle Scholar
  49. 49.
    Friend J, Yeo LY (2011) Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys 83(2):647Google Scholar
  50. 50.
    Gardner JW, Varadan VK, Awadelkarim OO (2007) MEMS and smart devices. Wiley, ColoradoGoogle Scholar
  51. 51.
    Gaso MIR, Jiménez Y, Francis LA, Arnau A (2013) Love wave biosensors: a review. In: Rinken T (ed) State of the art in biosensors—general aspects, InTech. doi:  10.5772/53077. http://www.intechopen.com/books/state-of-the-art-in-biosensors-general-aspects/love-wave-biosensors-a-review. Accessed 9 Jan 2014
  52. 52.
    González Castilla S (2009) Tecnologías de fabricación de microsistemas electromecánicos actuados piezoeléctricamente con nitruro de aluminio, Doctoral dissertation, TelecomunicacionGoogle Scholar
  53. 53.
    Grate JW, Stephen JM, Richard MW (1993) Acoustic wave microsensors. Anal Chem 65:848A–940AGoogle Scholar
  54. 54.
    GS1 (2014) http://www.gs1.org/traceability. Accessed 11 Jan 2014
  55. 55.
    Guth H, Grosh W (1994) Identification of the character impact odorants of stewed beef juice by instrumental analyses and sensory studies. J Agric Food Chem 42:2862–2866Google Scholar
  56. 56.
    Ha Z, Zhou K, Chen X, Yang Z, He L (2007) Study of a piezoelectric SAW immunosensor for the detection of alpha-fetoprotein. In: 1st International conference on bioinformatics and biomedical engineering, ICBBE 2007, pp 49–52Google Scholar
  57. 57.
    Hakola L (2005) Benefits of inkjet printing for printed electronics. www3.vtt.fi/liitetiedostot/cluster5_metsa_kemia_ymparisto/PIRA%20Printed%20Electronics%202005%20Hakola.pdf. Accessed 9 Jan 2014
  58. 58.
    Harrington R (2010) Future trends for active and intelligent packaging. www.foodproductiondaily.com/Packaging/Future-trends-for-active-and-intelligent-packaging. Accessed 9 Jan 2014
  59. 59.
    Harrington R (2011) Global market for active and intelligent packaging to double by 2021-report. www.foodproductiondaily.com/Packaging/Global-market-for-active-and-intelligent-packaging-to-double-by-2021-report. Accessed 9 Jan 2014
  60. 60.
    Harrington R (2012) Active and intelligent packaging public database launches. www.foodproductiondaily.com/Packaging/Active-and-intelligent-packaging-public-database-5launches. Accessed 9 Jan 2014
  61. 61.
    Hartmann CS, Claiborne LT (2006) Anti-collision interrogation pulse focusing system for use with multiple surface acoustic wave identification tags and method of operation thereof. US Patent 7084768Google Scholar
  62. 62.
    Hobbs PJ, Misselbrook TH, Pain BF (1995) Assessment of odors from livestock wastes by a photoionization detector, an electronic nose, olfactometry and gas-chromatography mass spectrometry. J Agric Eng Res 60:137–144Google Scholar
  63. 63.
    Hoummady M, Campitelli A, Wlodarski W (1997) Acoustic wave sensors: design, sensing mechanism and applications. Smart Mater Struct 6(647–657):1997Google Scholar
  64. 64.
    IEEE (2007) IEEE Standard 802.15.4 for Information technology Part 15.4: Specifications for Low-Rate Wireless Personal Area Networks (LRWPANs). Print: ISBN 0-7381-3686-7 SH9512713-040864-6Google Scholar
  65. 65.
    ISO (2014) .http://www.iso.org/iso/home/standards.htm. Accessed 11 Jan 2014
  66. 66.
    Jedermann R, Behrens C, Westphal D, Lang W (2006) Applying autonomous sensor systems in logistics: combining sensor networks, RFIDs and software agents. Sensor and Actuators A 132:370–375Google Scholar
  67. 67.
    Jha SK, Yadava RDS (2010) Development of surface acoustic wave electronic nose using pattern recognition system. Def Sci J 60(4):364–376Google Scholar
  68. 68.
    Jiang HJ, Moon K, Wong CP (2007) Low temperature carbon nanotube film transfer via conductive polymer composites. Nanotechnology 18(12):125203Google Scholar
  69. 69.
    Jiang HJ, Moon K, Wong CP (2007) The preparation of stable metal nanoparticles on carbon nanotubes whose surfaces were modified during production. Carbon 45(3):655–661Google Scholar
  70. 70.
    Jin H, Zhou J, He X, Wang W, Guo H, Dong S, Wang D, Xu Y, Geng J, Luo JK, Milne WI (2013) Flexible surface acoustic wave resonators built on disposable plastic film for electronics and lab-on-a-chip applications. Sci Rep 3:2140Google Scholar
  71. 71.
    Jung JY, Yeo JH, Lee HS, Pyo CS (2007) Technology trend of RFID sensor tags. Electron Telecommun Trends 22(3):33–45Google Scholar
  72. 72.
    Kang YS, Jin H, Ryou O, Lee YH (2012) A simulation approach for optimal design of RFID sensor tag-based cold chain systems. J Food Eng 113(1):1–10Google Scholar
  73. 73.
    Kerry J, Butler P (eds) (2008) Smart packaging technologies for fast moving consumer goods. Wiley, ColoradoGoogle Scholar
  74. 74.
    Kerry J, Hogan SA (2008) Smart Packaging of Meat and Poultry Products. In: Kerry J, Butler P (eds) Smart packaging technologies for fast moving consumer goods. Wiley, ColoradoGoogle Scholar
  75. 75.
    Kerry JP, O´Grady MN, Hogan SA (2006) Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: a review. Meat Sci 74:113–130Google Scholar
  76. 76.
    Knoben W, Zevenbergen MA, Brongersma SH (2012) Ionic liquid based electrochemical ethylene sensor for fruit and vegetable monitoring. Proceeding of IMCS 2012—The 14th international meeting on chemical sensors, pp 675–678Google Scholar
  77. 77.
    Konstas Z, Rida A, Vyas R, Katsibas K, Uzunoglu N, Tentzeris MM (2009) A novel “Green” inkjet-printed Z-shaped monopole antenna for RFID applications. In: Proceedings of 3rd European IEEE conference on antennas and propagation, EuCAP 2009, pp 2340–2343Google Scholar
  78. 78.
    Koptioug A, Jonsson P, Sidén J, Olsson T, Gulliksson M (2003) On the behavior of printed RFID tag antennas using conductive paint. In: Proceedings of Antenna ´03, Kalmar, SwedenGoogle Scholar
  79. 79.
    Kruijf ND, Beest MV, Rijk R, Sipiläinen-Malm T, Losada PP, Meulenaer BD (2002) Active and intelligent packaging: applications and regulatory aspects. Food Addit Contam 19(S1):144–162Google Scholar
  80. 80.
    Kumar P, Reinitz HW, Simunovic J, Sandeep KP, Franzon PD (2009) Overview of RFID technology and its applications in the food industry. J Food Sci 74(8):R101–R106Google Scholar
  81. 81.
    Kuswandi B, Wicaksono Y, Abdullah A, Heng LY, Ahmad M (2011) Smart packaging: sensors for monitoring of food quality and safety. Sens Instrum Food Qual Saf 5(3–4):137–146Google Scholar
  82. 82.
    Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391:1509–1519Google Scholar
  83. 83.
    Lee Y (1999) Antenna circuit design for RFID applications. Microchips Technology Inc, USAGoogle Scholar
  84. 84.
    Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O´Kennedy R (2003) Advances in biosensor for detection of pathogens in food and water. Enzyme Microb Technol 32:3–13Google Scholar
  85. 85.
    Leung J, Cheung W, Chu SC (2014) Aligning RFID applications with supply chain strategies. Inf Manag 51(2):260–269Google Scholar
  86. 86.
    Lieberzeit PA, Palfinger C, Dickert FL, Fischerauer G (2009) SAW RFID-tags for mass-sensitive detection of humidity and vapors. Sensors 9(12):9805–9815Google Scholar
  87. 87.
    López-Gómez A, Fernandez PS, Palop A, Periago PM, Martinez-López A, Marin-Iniesta F, Barbosa-Cánovas GV (2009) Food safety engineering: an emergent perspective. Food Eng Rev 1(1):84–104Google Scholar
  88. 88.
    LoPrinzi, S (2008) Active, controlled and intelligent packaging for foods and beverages. Report ID: FOD038B, January 2008. www.bccresearch.com. Accessed 11 Jan 2014
  89. 89.
    Mainetti L, Patrono L, Stefanizzi ML, Vergallo R (2013) An innovative and low-cost gapless traceability system of fresh vegetable products using RF technologies and EPCglobal standard. Comput Electron Agric 98:146–157Google Scholar
  90. 90.
    Manohar G (2012) Investigation of Various Surface Acoustic Wave Design Configurations for Improved Sensitivity. Doctoral dissertation, University of South Florida, USAGoogle Scholar
  91. 91.
    Mennecke B, Townsend A (2005) Radio frequency identification tagging as a mechanism of creating a viable producer’s brand in the cattle industry. Midwest agribusiness trade research and information center, Iowa State University, MATRIC Research Paper 05-MRP 8, pp 1–27Google Scholar
  92. 92.
    Merilampi S, Ukkonen L, Sydänheimo L, Ruuskanen P, Kivikoski M (2007) Analysis of silver ink bow-tie RFID tag antenas printed on paper substrates. Int J Antennas Propag. vol 2007, Article ID 90762, p 9. doi: 10.1155/2007/90762
  93. 93.
    Miltz J, Passy N, Mannheim CH (1995) Trends and applications of active packaging systems. Spec Publ Roy Soc Chem 162:201–210Google Scholar
  94. 94.
    Montoya A, Ocampo A, March C (2008) Fundamentals of piezoelectric immunosensors. In: ArnauVives A (ed) Piezoelectric transducers and applications. Springer, Berlin, pp 289–306Google Scholar
  95. 95.
    Murphy A, Millar N, Cuney S (2003) Active and Intelligent Packaging. The kitchen of the future. Presentation to innovation day, 4th Nov 2003. Cambridge Consultants Ltd. www.CambridgeConsultants.com. Accessed 11 Jan 2014
  96. 96.
    Myny K, Steudel S, Vicca P, Smout S, Beenhakkers MJ, van Aerle NA, Furthner F, van der Putten B, Tripathi AK, Gelinck GH, Genoe J, Dehaene W, Heremans P (2013) Organic RFID Tags. In: Cantatore E (ed) Applications of organic and printed electronics. Springer, US, pp 133–155Google Scholar
  97. 97.
    Ngai EWT, Moon KKL, Riggins FJ, Yi CY (2008) RFID research: an academic literature review (1995–2005) and future research directions. Int J Prod Econ 112:510–520Google Scholar
  98. 98.
    O´Connor MC(2007) RFID-enabled boxes inch closer to production. www.rfidjournal.com. Accessed 11 Jan 2014
  99. 99.
    Occhiuzzi C, Cippitelli S, Marrocco G (2010) Modeling, design and experimentation of wearable RFID sensor tag. IEEE Trans Antennas Propag 58(8):2490–2498Google Scholar
  100. 100.
    Occhiuzzi C, Rida A, Marrocco G, Tentzeris M (2011) RFID passive gas sensor integrating carbon nanotubes. IEEE Trans Microw Theory Tech 59(10):2674–2684Google Scholar
  101. 101.
    Oprea A, Courbat J, Bârsan N, Briand D, De Rooij NF, Weimar U (2009) Temperature, humidity and gas sensors integrated on plastic foil for low power applications. Sens Actuators B Chem 140(1):227–232Google Scholar
  102. 102.
    Pault H (1995) Brain boxes or simply packed. Food Process UK 64:23–26Google Scholar
  103. 103.
    Peris M, Escuder-Gilabert L (2009) A 21st century technique for food control: electronic noses. Anal Chim Acta 638(1):1–15Google Scholar
  104. 104.
    Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299:352–355Google Scholar
  105. 105.
    Platform, AIP Competence (2014) http://activepackaging.eu/index/platform. Accessed 11 Jan 2014
  106. 106.
    Plessky V, Reindl L (2010) Review on SAW RFID tags. IEEE Trans Ultrason Ferroelectr Freq Control 57(3):654–668Google Scholar
  107. 107.
    Pohl A (2000) A review of wireless SAW sensors. IEEE Trans Ultrason Ferroelectr Freq Control 47(2):317–332Google Scholar
  108. 108.
    Potyrailo RA, Surman C (2013) A passive radio-frequency identification (RFID) gas sensor with self-correction against fluctuations of ambient temperature. Sens Actuators B Chem 185:587–593Google Scholar
  109. 109.
    Potyrailo RA, Mouquin H, Morris WG (2008) Position-independent chemical quantitation with passive 13.56-MHz radio frequency identification (RFID) sensors. Talanta 75(3):624–628Google Scholar
  110. 110.
    Potyrailo RA, Surman C, Chen R, Go S, Dovidenko K, Morris WG, Holwitt E, Sorola V, Kiel JL (2009) Label-free biosensing using passive radio-frequency identification (RFID) sensors. IEEE Int Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2009:2378–2380Google Scholar
  111. 111.
    Potyrailo RA, Surman C, Go S, Lee Y, Sivavec T, Morris WG (2009) Development of radio-frequency identification sensors based on organic electronic sensing materials for selective detection of toxic vapors. J Appl Phys 106(12):124902Google Scholar
  112. 112.
    Potyrailo RA, Burns A, Surman C, Lee DJ, McGinniss E (2012) Multivariable passive RFID vapor sensors: roll-to-roll fabrication on a flexible substrate. Analyst 137(12):2777–2781Google Scholar
  113. 113.
    Potyrailo RA, Nagraj N, Tang Z, Mondello FJ, Surman C, Morris W (2012) Battery-free radio frequency identification (RFID) sensors for food quality and safety. J Agric Food Chem 60(35):8535–8543Google Scholar
  114. 114.
    Ranky PG (2006) An introduction to radio frequency identification (RFID) methods and solutions. Assembly Autom 26(1):28–33Google Scholar
  115. 115.
    Rao KS, Nikitin PV, Lam SF (2005) Antenna design for UHF RFID tags: a review and a practical application. IEEE Trans Antennas Propag 53(12):3870–3876Google Scholar
  116. 116.
    Rao KS, Nikitin PV, Lam SF (2005b). Impedance matching concepts in RFID transponder design. In: Automatic identification advanced technologies, 2005. Fourth IEEE Workshop on IEEE, pp 39–42Google Scholar
  117. 117.
    Regattieri A, Gamberi M, Manzini R (2007) Traceability of food products: general framework and experimental evidence. J Food Eng 81:347–356Google Scholar
  118. 118.
    Reyes PI, Li J, Duan Z, Yang X, Cai Y, Huang Q, Lu Y (2013) ZnO surface acoustic wave sensors built on Zein-coated flexible food packages. Sensor Lett 11(3):539–544Google Scholar
  119. 119.
    Rida A, Yang L, Vyas R, Basat S, Bhattacharya SK, Tentzeris MM (2007a) Novel manufacturing processes for ultra-low-cost paper-based RFID tags with enhanced “wireless intelligence”. IEEE 2007 electronic components and technology conference, pp 773–776Google Scholar
  120. 120.
    Rida A, Yang L, Vyas R, Bhattacharya SK, Tentzeris MM (2007b) Design and integration of inkjet-printed paper-based UHF components for RFID and ubiquitous sensing applications. Proceeding of 37th European microwave conference. October 2007, Munich, GermanyGoogle Scholar
  121. 121.
    Riva M, Piergiovanni L, Schiraldi A (2001) Performances of time–temperature indicators in the study of temperature exposure of packaged fresh foods. Pack Technol Sci 14(1):1–9Google Scholar
  122. 122.
    Robertson G (2006) Food packaging principles and practices. Taylor & Francis, Boca RatonGoogle Scholar
  123. 123.
    Rooney ML (1995) Overview of active food packaging. In: Rooney ML (ed) Active food packaging. Springer, Berlin, US, pp 1–37Google Scholar
  124. 124.
    Ruhanen A, Hanhikorpi M, Bertuccelli F, Colonna A, Malik W, Ranasinghe D, López TS, Yan N, Tavilampi M (2008) Sensor-enabled RFID tag handbook. BRIDGE EU Project, IST-2005-033546Google Scholar
  125. 125.
    Sankaran S, Panigrahi S, Mallik S (2011) Olfactory receptor based piezoelectric biosensors for detection of alcohols related to food safety applications. Sens Actuators B Chem 155(1):8–18Google Scholar
  126. 126.
    Sehra G, Cole M, Gardner JW (2004) Miniature taste sensing system based on dual SH-SAW sensor device: an electronic tongue. Sens Actuators B Chem 103(1):233–239Google Scholar
  127. 127.
    Shih DH, Sun PL, Yen DC, Huang SM (2006) Taxonomy and survey of RFID anti-collision protocols. Comput Commun 29(11):2150–2166Google Scholar
  128. 128.
    Sidek O, Quadri SA, Kabir S, Bin Afzal MH (2013) Application of carbon nanotube in wireless sensor network to monitor carbon dioxide. J Exp Nanosci 8(2):154–161Google Scholar
  129. 129.
    Siden J, Nilsson HE (2007) Line width limitations of flexographic-screen-and inkjet printed RFID antennas. In: Proceedings of antennas and propagation IEEE international symposium, pp 1745–1748Google Scholar
  130. 130.
    Skolnik MI (1962) Introduction to radar system. McGraw-Hill Book Co. Inc., New YorkGoogle Scholar
  131. 131.
    Smits E, Schram J, Nagelkerke M, Kusters R, van Heck G, van Acht V, Gerlinck G (2012) Development of printed RFID sensor tags for smart food packaging. IMCS 2012—the 14th international meeting on chemical sensors. Nuremberg, ICMS, pp 403–406Google Scholar
  132. 132.
    Springer A, Weigel R, Pohl A, Seifert F (1999) Wireless identification and sensing using surface acoustic wave devices. Mechatronics 9:745–756Google Scholar
  133. 133.
    Srinivas PR, Philbert M, Vu TQ, Huang Q, Kokini JL, Saos E, Chen H, Peterson CM, Friedl KE, McDade-Ngutter C, Hubbard V, Starke-Reed P, Miller N, Betz JM, Dwyer J, Milner J, Ross SA (2010) Nanotechnology research: applications in nutritional sciences. J Nutr 140(1):119–124Google Scholar
  134. 134.
    Stankovic J, Abdelzaher T, Lu C, Sha L, Hou J (2003) Real-time communication and coordination in embedded sensor networks. Proc IEEE 91:1002–1022Google Scholar
  135. 135.
    Steinberg IM, Steinberg MD (2009) Radio-frequency tag with optoelectronic interface for distributed wireless chemical and biological sensor applications. Sens Actuators B Chem 138(1):120–125Google Scholar
  136. 136.
    Stevens DS, et al.(2010). Applications of wireless temperature measurement using saw resonators. In: Proceedings of fourth international symposium on acoustic wave devices for future mobile communication systems, Chiba University, JapanGoogle Scholar
  137. 137.
    Stutzman WL, Thiele GA (2013) Antenna theory and design. Wiley, ColoradoGoogle Scholar
  138. 138.
    Summers L (1992) Intelligent packaging. Centre for Exploitation of Science and Technology, LondonGoogle Scholar
  139. 139.
    Taoukis PS, Labuza TP (1989) Applicability of time-temperature indicators as shelf life monitors of food products. J Food Sci 54(4):783–788Google Scholar
  140. 140.
    Taoukis PS, Labuza TP (2003) Time-temperature indicators (TTIs). In: Ahvenainen R (ed) Novel food packaging techniques. CRC Press, Boca Raton, pp 103–126Google Scholar
  141. 141.
    Tourette S, Chommelouxa L, Le Guen JF, Friedt JM, Ménage P, Collin G, Staraj R, Hermelin D, Bailandras S, Luxey C, Le Thuc P (2010) Implantable SAW sensor for telemetry of temperature and blood pressure: the ANR-TECSAN CIMPA project. IRBM 31(2):101–106Google Scholar
  142. 142.
    Tudu B, Shaw L, Jana A, Bhattacharyya N, Bandyopadhyay R (2012) Instrumental testing of tea by combining the responses of electronic nose and tongue. J Food Eng 110(3):356–363Google Scholar
  143. 143.
    Twede D, Harte B (2003) Logistical packaging for food marketing systems. In: Coles R, Mcdowell D, Kirwan MJ (eds) Food packaging technology. CRC Press, Boca RatonGoogle Scholar
  144. 144.
    Ukkonen L, Schaffrath M, Kataja J, Sydanheimo L, Kivikoski M (2006) Evolutionary RFID tag antenna design for paper industry applications. Int J Radio Freq Ident Technol Appl 1(1):107–122Google Scholar
  145. 145.
    Unander T, Nilsson HE (2009) Characterization of printed moisture sensors in packaging surveillance applications. IEEE Sens J 9(8):922–928Google Scholar
  146. 146.
    US Department of Energy (1998) Innovative technology, surface acoustic wave/gas chromatography system for trace vapor analysis. US Department of Energy, USAGoogle Scholar
  147. 147.
    Vanderroost M, Ragaert P, Devlieghere F, De Meulenaer B (2014) Intelligent food packaging: the next generation. Trends Food Sci Technol 39(1):47–62Google Scholar
  148. 148.
    Vermeiren L, Devlieghere F, Van Beest M, De Kruijf N, Debevere J (1999) Developments in the active packaging of foods. Trends Food Sci Technol 10(3):77–86Google Scholar
  149. 149.
    Virtanen J, Ukkonen L, Bjorninen T, Elsherbeni AZ, Sydanheimo L (2011) Inkjet-printed humidity sensor for passive UHF RFID systems. IEEE Trans Instrum Meas 60(8):2768–2777Google Scholar
  150. 150.
    Vogt H (2002) Efficient object identification with passive RFID tags. Pervasive computing, vol 2414., Lecture notes in computer scienceSpringer, Berlin, pp 98–113Google Scholar
  151. 151.
    Wang N, Zhang N, Wang M (2006) Wireless sensors in agriculture and food industry—Recent development and future perspective. Comput Electron Agric 50:1–14Google Scholar
  152. 152.
    Wang Y, Jia Y, Chen Q, Wang Y (2008) A passive wireless temperature sensor for harsh environment applications. Sensors 8(12):7982–7995Google Scholar
  153. 153.
    Wang Y, Yang Z, Hou Z, Xu D, Wei L, Kong ESW, Zhang Y (2010) Flexible gas sensors with assembled carbon nanotube thin films for DMMP vapor detection. Sens Actuators B Chem 150(2):708–714Google Scholar
  154. 154.
    Want R (2006) An introduction to RFID technology. Pervas Comput IEEE 5(1):25–33Google Scholar
  155. 155.
    Weigel R, Morgan DP, Owens JM, Ballato A, Lakin KM, Hashimoto KY, Ruppel CC (2002) Microwave acoustic materials, devices, and applications. IEEE Trans Microw Theory Tech 50(3):738–749Google Scholar
  156. 156.
    Wentworth SM (2003) Microbial sensor tags. In: The 2003 IFT (The Institute of Food Technology) annual meeting book of abstracts, Chicago, Illinois, USA, July, pp 12–16Google Scholar
  157. 157.
    Wilson CL (ed) (2010) Intelligent and active packaging for fruit and vegetables. CRC Press, Boca RatonGoogle Scholar
  158. 158.
    Wilson AD (2013) Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors 13(2):2295–2348Google Scholar
  159. 159.
    Wohltjen H, Ballantine D, White R, Martin S, Ricco A, Zellers E, Frye G (1997) Acoustic wave sensor: theory, design, and physico-chemical applications. Academic Press, San DiegoGoogle Scholar
  160. 160.
    Wong CP, Moon KS, Li Y (eds) (2010) Nano-bio-electronic, photonic and MEMS packaging. Springer, BerlinGoogle Scholar
  161. 161.
    Yam KL (ed) (2009) The wiley encyclopedia of packaging technology, 3rd edn. Wiley, DanversGoogle Scholar
  162. 162.
    Yam KL, Takhistov PT, Miltz J (2005) Intelligent packaging: concepts and applications. J Food Sci 70(1):R1–R10Google Scholar
  163. 163.
    Yang L, Tentzeris MM (2007) Design and characterization of novel paper-based inkjet-printed RFID and microwave structures for telecommunication and sensing applications. IEEE microwave symposium, IEEE/MTT-S International, pp 1633–1636Google Scholar
  164. 164.
    Yang L, Rida A, Vyas R, Tentzeris MM (2007) RFID Tag and RF structures on a paper substrate using Inkjet-printing technology. IEEE Trans Microw Theory Tech 55(12):2894–2901Google Scholar
  165. 165.
    Yang L, Rida A, Vyas R, Tentzeris MM (2007b) Novel “enhanced-cognition” RFID architectures on organic/paper low-cost substrates utilizing inkjet technologies. Int J Antennas and Propagation. Vol 2007, Article ID 68385, 7 p, doi: 10.1155/2007/68385
  166. 166.
    Yang L, Zhang R, Staiculescu D, Wong CP, Tentzeris MM (2009) A novel conformal RFID-enabled module utilizing inkjet-printed antennas and carbon nanotubes for gas-detection applications. IEEE Antennas Wirel Propag Lett 8:653–656Google Scholar
  167. 167.
    Yezza IA (2009) Printed intelligence in packaging: Current and potential applications of nanotechnology. In: Proc Symp Nanomaterials for Flexible Packaging, Columbus, Code 80863Google Scholar
  168. 168.
    Yi X, Wu T, Wang Y, Leon RT, Tentzeris MM, Lantz G (2011) Passive wireless smart-skin sensor using RFID-based folded patch antennas. Int J Smart Nano Mater 2(1):22–38Google Scholar
  169. 169.
    Zhou F, Chen C, Jin D, Huang C, Min H (2004) Evaluating and optimizing power consumption of anti-collision protocols for applications in RFID systems. In: Proceedings 2004 international symposium on low power electronics and design, pp 357–362Google Scholar
  170. 170.
    Zhu L, Xiu Y, Hess DW, Wong CP (2005) Aligned carbon nanotube stacks by water-assisted selective etching. Nano Lett 5(12):2641–2645Google Scholar
  171. 171.
    Zhu L, Sun Y, Hess DW, Wong CP (2006) Well-aligned open-ended carbon nanotube architectures: an approach for device assembly. Nano Lett 6(2):243–247Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Antonio López-Gómez
    • 1
  • Fernando Cerdán-Cartagena
    • 2
  • Juan Suardíaz-Muro
    • 3
  • María Boluda-Aguilar
    • 1
  • María Esther Hernández-Hernández
    • 1
  • María Angeles López-Serrano
    • 1
  • Juan López-Coronado
    • 4
  1. 1.Food Engineering and Agricultural Equipment DepartmentUniversidad Politécnica de CartagenaCartagenaSpain
  2. 2.Information and Communication Technologies DepartmentUniversidad Politécnica de CartagenaCartagenaSpain
  3. 3.Electronic Technology DepartmentUniversidad Politécnica de CartagenaCartagenaSpain
  4. 4.Automatics and Systems Engineering DepartmentUniversidad Politécnica de CartagenaCartagenaSpain

Personalised recommendations