Food Engineering Reviews

, Volume 3, Issue 3–4, pp 159–170 | Cite as

Nonthermal Plasma Inactivation of Food-Borne Pathogens

  • N. N. Misra
  • B. K. Tiwari
  • K. S. M. S. Raghavarao
  • P. J. Cullen
Review Article


Nonthermal plasma (NTP) is electrically energized matter and is composed of highly reactive species including gas molecules, charged particles in the form of positive ions, negative ions, free radicals, electrons and quanta of electromagnetic radiation (photons) at near-room temperature. NTP technology is an emerging nonthermal technology with potential applications for sterilization in the food industries. An upsurge in the research activities for plasma-based inactivation of food-borne pathogens is evident in recent years. These studies have shown that NTP can be used for the surface decontamination of raw produce including; dried nuts and packaging materials. This paper reviews the action of plasma agents on the microbial classes and describes proven and potential applications in food processing. Novel developments in the technology and a future outlook for the application to foods are discussed.


Nonthermal Plasma Sterilization Decontamination Food 


  1. 1.
    Abramzon N, Joaquin JC, Bray J, Brelles-Marino G (2006) Biofilm destruction by RF high-pressure cold plasma jet. Plasma Sci IEEE Trans 34(4):1304–1309CrossRefGoogle Scholar
  2. 2.
    Anonymous (2010) Technologies: cool plasma for surface decontamination. Accessed 1st July 2010
  3. 3.
    Azharonok V, Krat’ko L, Nekrashevich YI, Filatova I, Mel’nikova L, Dudchik N, Yanetskaya S, Bologa M (2009) Bactericidal action of the plasma of high-frequency capacitive and barrier discharges on microorganisms. J Eng Phys Thermophys 82(3):419–426CrossRefGoogle Scholar
  4. 4.
    Basaran P, Basaran-Akgul N, Oksuz L (2008) Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiol 25(4):626–632. doi:10.1016/ CrossRefGoogle Scholar
  5. 5.
    Boudam M, Moisan M, Saoudi B, Popovici C, Gherardi N, Massines F (2006) Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. J Phys D Appl Phys 39:3494CrossRefGoogle Scholar
  6. 6.
    Brown H (2010) Get in for the pathogen kill with cold plasma technology.
  7. 7.
    Cao W, Zhu ZW, Shi ZX, Wang CY, Li BM (2009) Efficiency of slightly acidic electrolyzed water for inactivation of Salmonella enteritidis and its contaminated shell eggs. Int J Food Microbiol 130(2):88–93CrossRefGoogle Scholar
  8. 8.
    Chen J, Rossman ML, Pawar DM (2007) Attachment of enterohemorrhagic Escherichia coli to the surface of beef and a culture medium. LWT Food Sci Technol 40(2):249–254CrossRefGoogle Scholar
  9. 9.
    Cooper M, Fridman G, Staack D, Gutsol AF, Vasilets VN, Anandan S, Cho YI, Fridman A, Tsapin A (2009) Decontamination of surfaces from extremophile organisms using nonthermal atmospheric-pressure plasmas. Plasma Sci IEEE Trans 37(6):866–871CrossRefGoogle Scholar
  10. 10.
    Critzer F, Kelly-Wintenberg K, South S, Golden D (2007) Atmospheric plasma inactivation of foodborne pathogens on fresh produce surfaces. J Food Protect 70(10):2290Google Scholar
  11. 11.
    Davies R, Breslin M (2003) Investigations into possible alternative decontamination methods for Salmonella enteritidis on the surface of table eggs. J Veterinary Med Ser B 50(1):38–41CrossRefGoogle Scholar
  12. 12.
    Deilmann M, Halfmann H, Bibinov N, Wunderlich J, Awakowicz P (2008) Low-pressure microwave plasma sterilization of polyethylene terephthalate bottles. J Food Protect 71(10):2119–2123Google Scholar
  13. 13.
    Denes AR, Somers EB, Wong ALC, Denes FS (2000) Plasma-aided treatment of surfaces against bacterial attachment and biofilm deposition. US Patent 6,096,564Google Scholar
  14. 14.
    Deng X, Shi J, Kong MG (2006) Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. Plasma Sci IEEE Trans 34(4):1310–1316CrossRefGoogle Scholar
  15. 15.
    Deng X, Shi J, Kong M (2009) Protein destruction by a helium atmospheric pressure glow discharge: capability and mechanisms. J Appl Phys 101(7):074701CrossRefGoogle Scholar
  16. 16.
    Dobrynin D, Fridman G, Friedman G, Fridman A (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 11:115020CrossRefGoogle Scholar
  17. 17.
    Espie S, Marsili L, MacGregor SJ, Anderson JG (2001) Investigation of dissolved ozone production using plasma discharge in liquid. Pulsed power plasma science. Dig Tech Papers 1:616–619Google Scholar
  18. 18.
    Feichtinger J, Schulz A, Walker M, Schumacher U (2003) Sterilisation with low-pressure microwave plasmas. Surf Coat Technol 174:564–569CrossRefGoogle Scholar
  19. 19.
    Fernandez-Gutierrez SA, Pedrow PD, Pitts MJ, Powers J (2010) Cold atmospheric-pressure plasmas applied to active packaging of apples. Plasma Sci IEEE Trans 38(4):957–965CrossRefGoogle Scholar
  20. 20.
    Frank JF, Ehlers J, Wicker L (2003) Removal of Listeria monocytogenes and poultry soil-containing biofilms using chemical cleaning and sanitizing agents under static conditions. Food Protection Trends 23(8):654–663Google Scholar
  21. 21.
    Fuhrmann H, Rupp N, Büchner A, Braun P (2010) The effect of gaseous ozone treatment on egg components. J Sci Food Agric 90(4):593–598. doi:10.1002/jsfa.3853 Google Scholar
  22. 22.
    Goldman M, Pruitt L (1998) Comparison of the effects of gamma radiation and low temperature hydrogen peroxide gas plasma sterilization on the molecular structure, fatigue resistance, and wear behavior of UHMWPE. J Biomed Mater Res 40(3):378–384. doi:10.1002/(sici)1097-4636(19980605)40:3<378:aid-jbm6>;2-c CrossRefGoogle Scholar
  23. 23.
    Gómez-López VM, Ragaert P, Debevere J, Devlieghere F (2007) Pulsed light for food decontamination: a review. Trends Food Sci Technol 18(9):464–473. doi:10.1016/j.tifs.2007.03.010 CrossRefGoogle Scholar
  24. 24.
    Gould GW (2001) New processing technologies: an overview. Proc Nutr Soc 60(04):463–474. doi:10.1079/PNS2001105 CrossRefGoogle Scholar
  25. 25.
    Grzegorzewski F, Rohn S, Kroh LW, Geyer M, Schlüter O (2010) Surface morphology and chemical composition of lamb’s lettuce (Valerianella locusta) after exposure to a low-pressure oxygen plasma. Food Chem 122(4):1145–1152CrossRefGoogle Scholar
  26. 26.
    Grzegorzewski F, Rohn S, Quade A, Schröder K, Ehlbeck J, Schlüter O, Kroh LW (2010) Reaction chemistry of 1, 4 benzopyrone derivates in non equilibrium low temperature plasmas. Plasma Process Polym 7(6):466–473CrossRefGoogle Scholar
  27. 27.
    Güleç HA, SarIoglu K, Mutlu M (2006) Modification of food contacting surfaces by plasma polymerisation technique. Part I: determination of hydrophilicity, hydrophobicity and surface free energy by contact angle method. J Food Eng 75(2):187–195. doi:10.1016/j.jfoodeng.2005.04.007 Google Scholar
  28. 28.
    Guzel-Seydim ZB, Greene AK, Seydim AC (2004) Use of ozone in the food industry. Lebensmittel-Wissenschaft und-Technologie 37(4):453–460. doi:10.1016/j.lwt.2003.10.014 Google Scholar
  29. 29.
    Havelaar AH, Brul S, de Jong A, de Jonge R, Zwietering MH, ter Kuile BH (2010) Future challenges to microbial food safety. Int J Food Microbiol 139(Supplement 1):S79–S94. doi:10.1016/j.ijfoodmicro.2009.10.015 CrossRefGoogle Scholar
  30. 30.
    Hierro E, Manzano S, Ordóñez JA, de la Hoz L, Fernández M (2009) Inactivation of Salmonella enterica serovar Enteritidis on shell eggs by pulsed light technology. Int J Food Microbiol 135(2):125–130. doi:10.1016/j.ijfoodmicro.2009.07.034 CrossRefGoogle Scholar
  31. 31.
    Hong Y, Kang J, Lee H, Uhm H, Moon E, Park Y (2009) Sterilization effect of atmospheric plasma on Escherichia coli and Bacillus subtilis endospores. Lett Appl Microbiol 48(1):33–37CrossRefGoogle Scholar
  32. 32.
    Hury S, Vidal D, Desor F, Pelletier J, Lagarde T (1998) A parametric study of the destruction efficiency of Bacillus spores in low pressure oxygen based plasmas. Lett Appl Microbiol 26(6):417–421CrossRefGoogle Scholar
  33. 33.
    Jessen B, Lammert L (2003) Biofilm and disinfection in meat processing plants. Int Biodeterior Biodegrad 51(4):265–269CrossRefGoogle Scholar
  34. 34.
    Keener KM, Jensen JL, Valdramidis VP, Byrne E, Connolly J, Mosnier JP, Cullen PJ (2010) Decontamination of Bacillus subtilis spores in a sealed package using a non-thermal plasma system. Paper presented at the NATO advanced research workshop- plasma for bio-decontamination, medicine and food security, Jasna, SlovakiaGoogle Scholar
  35. 35.
    Kelly-Wintenberg K, Hodge A, Montie T, Deleanu L, Sherman D, Roth JR, Tsai P, Wadsworth L (1999) Use of a one atmosphere uniform glow discharge plasma to kill a broad spectrum of microorganisms. J Vacuum Sci Technol A Vacuum Surf Films 17:1539Google Scholar
  36. 36.
    Kim J-G, Yousef AE, Khadre MA (2003) Ozone and its current and future application in the food industry. In: Advances in food and nutrition research, vol 45. Academic Press, London, pp 167–218Google Scholar
  37. 37.
    Kim K, Kim G, Hong YC, Yang SS (2010) A cold micro plasma jet device suitable for bio-medical applications. Microelectron Eng 87(5–8):1177–1180CrossRefGoogle Scholar
  38. 38.
    Kim B, Yun H, Jung S, Jung Y, Jung H, Choe W, Jo C (2011) Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. Food Microbiol 28(1):9–13. doi:10.1016/ CrossRefGoogle Scholar
  39. 39.
    Klockow PA, Keener KM (2009) Safety and quality assessment of packaged spinach treated with a novel ozone-generation system. LWT Food Sci Technol 42(6):1047–1053CrossRefGoogle Scholar
  40. 40.
    Korachi M, Gurol C, Aslan N (2010) Atmospheric plasma discharge sterilization effects on whole cell fatty acid profiles of Escherichia coli and Staphylococcus aureus. J Electrostat 68(6):508–512. doi:10.1016/j.elstat.2010.06.014 CrossRefGoogle Scholar
  41. 41.
    Kruk ZA, Yun HJ, Rutley DL, Lee EJ, Kim YJ, Jo C (2009) The effect of high pressure on microbial population and sensory characteristics of chicken meat. In: Proceedings of the 55th international congress of meat science and technology. Bella Center, Copenhagen, pp 26–30Google Scholar
  42. 42.
    Kudra T, Mujumdar AS (2009) Advanced drying technologies. CRC Press, Boca RatonGoogle Scholar
  43. 43.
    Kusumaningrum H, Riboldi G, Hazeleger W, Beumer R (2003) Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods. Int J Food Microbiol 85(3):227–236CrossRefGoogle Scholar
  44. 44.
    Laroussi M (2005) Low temperature plasma based sterilization: overview and state of the art. Plasma Process Polym 2(5):391–400CrossRefGoogle Scholar
  45. 45.
    Laroussi M, Mendis D, Rosenberg M (2003) Plasma interaction with microbes. New J Phys 5:41CrossRefGoogle Scholar
  46. 46.
    Lassen KS, Nordby B, Grün R (2003) Optimization of a RF generated CF4/O2 gas plasma sterilization process. J Biomed Mater Res B Appl Biomater 65(2):239–244CrossRefGoogle Scholar
  47. 47.
    Lee K, Paek K, Ju WT, Lee Y (2006) Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen. J Microbiol 44(3):269–275Google Scholar
  48. 48.
    Leipold F, Kusano Y, Hansen F, Jacobsen T (2010) Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas. Food Control 21(8):1194–1198CrossRefGoogle Scholar
  49. 49.
    Liu F, Sun P, Bai N, Tian Y, Zhou H, Wei S, Zhou Y, Zhang J, Zhu W, Becker K (2010) Inactivation of bacteria in an aqueous environment by a direct current, cold atmospheric pressure air plasma microjet. Plasma Process Polym 7(3–4):231–236. doi:10.1002/ppap.200900070 CrossRefGoogle Scholar
  50. 50.
    Lu XP, Ye T, Cao YG, Sun ZY, Xiong Q, Tang ZY, Xiong ZL, Hu J, Jiang ZH, Pan Y (2009) The roles of the various plasma agents in the inactivation of bacteria. J Appl Phys 104(5):053309CrossRefGoogle Scholar
  51. 51.
    Manas P, Pagán R (2005) Microbial inactivation by new technologies of food preservation. J Appl Microbiol 98(6):1387–1399CrossRefGoogle Scholar
  52. 52.
    Menashi WP (1968) Treatment of surfaces. US Patent 3,383,163Google Scholar
  53. 53.
    Mendis D, Rosenberg M, Azam F (2002) A note on the possible electrostatic disruption of bacteria. Plasma Sci IEEE Trans 28(4):1304–1306CrossRefGoogle Scholar
  54. 54.
    Mogul R, Bol’shakov AA, Chan SL, Stevens RM, Khare BN, Meyyappan M, Trent JD (2003) Impact of low-temperature plasmas on Deinococcus radiodurans and biomolecules. Biotechnol Prog 19(3):776–783. doi:10.1021/bp025665e CrossRefGoogle Scholar
  55. 55.
    Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia LH (2001) Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharmaceut 226(1–2):1–21CrossRefGoogle Scholar
  56. 56.
    Montie TC, Kelly-Wintenberg K, Roth JR (2002) An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. Plasma Sci IEEE Trans 28(1):41–50CrossRefGoogle Scholar
  57. 57.
    Moreau M, Feuilloley M, Orange N, Brisset JL (2005) Lethal effect of the gliding arc discharges on Erwinia spp. J Appl Microbiol 98(5):1039–1046CrossRefGoogle Scholar
  58. 58.
    Moreau M, Feuilloley M, Veron W, Meylheuc T, Chevalier S, Brisset JL, Orange N (2007) Gliding arc discharge in the potato pathogen Erwinia carotovora subsp. atroseptica: mechanism of lethal action and effect on membrane-associated molecules. Appl Environ Microbiol 73(18):5904CrossRefGoogle Scholar
  59. 59.
    Munakata N, Saito M, Hieda K (1991) Inactivation action spectra of Bacillus subtilis spores in extended ultraviolet wavelengths (50–300 nm) obtained with synchrotron radiation. Photochem Photobiol 54(5):761CrossRefGoogle Scholar
  60. 60.
    Muranyi P, Wunderlich J, Heise M (2007) Sterilization efficiency of a cascaded dielectric barrier discharge. J Appl Microbiol 103(5):1535–1544CrossRefGoogle Scholar
  61. 61.
    Nelson CL, Berger TJ (1989) Inactivation of microorganisms by oxygen gas plasma. Current Microbiology 18(4):275–276CrossRefGoogle Scholar
  62. 62.
    Niemira BA, Sites J (2008) Cold plasma inactivates Salmonella Stanley and Escherichia coli O157: H7 inoculated on golden delicious apples. J Food Protect 71(7):1357–1365Google Scholar
  63. 63.
    Ozdemir M, Yurteri CU, Sadikoglu H (1999) Physical polymer surface modification methods and applications in food packaging polymers. Crit Rev Food Sci Nutr 39(5):457–477CrossRefGoogle Scholar
  64. 64.
    Pelletier J (1992) La stérilisation par le procédé plasma (Sterilisation by plasma processing). Agressologie 33:105–110Google Scholar
  65. 65.
    Perni S, Shama G, Hobman J, Lund P, Kershaw C, Hidalgo-Arroyo G, Penn C, Deng XT, Walsh J, Kong MG (2007) Probing bactericidal mechanisms induced by cold atmospheric plasmas with Escherichia coli mutants. Appl Phys Lett 90:073902CrossRefGoogle Scholar
  66. 66.
    Perni S, Liu DW, Shama G, Kong MG (2008) Cold atmospheric plasma decontamination of the pericarps of fruit. J Food Protect 71(2):302–308Google Scholar
  67. 67.
    Perni S, Shama G, Kong MG (2008) Cold atmospheric plasma disinfection of cut fruit surfaces contaminated with migrating microorganisms. J Food Protect 71(8):1619–1625Google Scholar
  68. 68.
    Petasch W, Räuchle E, Muegge H, Muegge K (1997) Duo-Plasmaline—a linearly extended homogeneous low pressure plasma source. Surf Coat Technol 93(1):112–118. doi:10.1016/s0257-8972(97)00015-7 CrossRefGoogle Scholar
  69. 69.
    Pothakamury UR, Monsalve-Gonzālez A, Barbosa-Cánovas GV, Swanson BG (1995) Inactivation of Escherichia coli and Staphylococcus aureus in model foods by pulsed electric field technology. Food Res Int 28(2):167–171CrossRefGoogle Scholar
  70. 70.
    Ragni L, Berardinelli A, Vannini L, Montanari C, Sirri F, Guerzoni ME, Guarnieri A (2010) Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. J Food Eng 100(1):125–132CrossRefGoogle Scholar
  71. 71.
    Rastogi N, Raghavarao K, Balasubramaniam V, Niranjan K, Knorr D (2007) Opportunities and challenges in high pressure processing of foods. Crit Rev Food Sci Nutr 47(1):69–112CrossRefGoogle Scholar
  72. 72.
    Rodriguez-Romoand LA, Yousef AE (2005) Inactivation of Salmonella enterica serovar Enteritidis on shell eggs by ozone and UV radiation. J Food Protect 68(4):711–717Google Scholar
  73. 73.
    Rostaing J (2007) Method for cold plasma treatment of plastic bottles and device for implementing same. US Patent App. 20,090/304,950Google Scholar
  74. 74.
    Roth S, Feichtinger J, Hertel C (2010) Characterization of Bacillus subtilis spore inactivation in low pressure, low temperature gas plasma sterilization processes. J Appl Microbiol 108(2):521–531CrossRefGoogle Scholar
  75. 75.
    Rowan N, Espie S, Harrower J, Anderson J, Marsili L, MacGregor S (2007) Pulsed-plasma gas-discharge inactivation of microbial pathogens in chilled poultry wash water. J Food Protect 70(12):2805–2810Google Scholar
  76. 76.
    Sale A, Hamilton W (1967) Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts. Biochimica et Biophysica Acta (BBA) General Sub 148(3):781–788Google Scholar
  77. 77.
    Sampedro F, Rodrigo M, Martinez A, Rodrigo D, Barbosa-Cánovas G (2005) Quality and safety aspects of PEF application in milk and milk products. Crit Rev Food Sci Nutr 45(1):25–47CrossRefGoogle Scholar
  78. 78.
    Schmidt JA (2003) System and method of applying energetic ions for sterilization. US Patent 6,667,007Google Scholar
  79. 79.
    Schneider J, Baumgärtner K, Feichtinger J, Krüger J, Muranyi P, Schulz A, Walker M, Wunderlich J, Schumacher U (2005) Investigation of the practicability of low-pressure microwave plasmas in the sterilisation of food packaging materials at industrial level. Surf Coat Technol 200(1–4):962–966CrossRefGoogle Scholar
  80. 80.
    Schulz A, Feichtinger J, Krüger J, Walker M, Schumacher U (2003) Spectroscopic investigations on silicon nitride deposition with the Plasmodul®. Surf Coat Technol 174–175:947–951. doi:10.1016/s0257-8972(03)00535-8
  81. 81.
    Selcuk M, Oksuz L, Basaran P (2008) Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresour Technol 99(11):5104–5109Google Scholar
  82. 82.
    Shama G, Bayliss D, Perni S, Kong MG (2009) Applications of cold atmospheric gas plasmas for microbial decontamination in the food industry. Paper presented at the BFE 2009: proceedings of the international conference on bio and food electrotechnologies. Compiegne, FranceGoogle Scholar
  83. 83.
    Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. LWT Food Sci Technol 43(4):573–583CrossRefGoogle Scholar
  84. 84.
    Somers EB, Wong ACL (2004) Efficacy of two cleaning and sanitizing combinations on Listeria monocytogenes biofilms formed at low temperature on a variety of materials in the presence of ready-to-eat meat residue. J Food Protect 67(10):2218–2229Google Scholar
  85. 85.
    Spilimbergo S, Dehghani F, Bertucco A, Foster NR (2003) Inactivation of bacteria and spores by pulse electric field and high pressure CO2 at low temperature. Biotechnol Bioeng 82(1):118–125CrossRefGoogle Scholar
  86. 86.
    Terrier O, Essere B, Yver M, Barthélémy M, Bouscambert-Duchamp M, Kurtz P, VanMechelen D, Morfin F, Billaud G, Ferraris O, Lina B, Rosa-Calatrava M, Moules V (2009) Cold oxygen plasma technology efficiency against different airborne respiratory viruses. J Clin Virol 45(2):119–124. doi:10.1016/j.jcv.2009.03.017 CrossRefGoogle Scholar
  87. 87.
    Tiwari BK, O’Donnell CP, Cullen PJ (2009) Effect of non thermal processing technologies on the anthocyanin content of fruit juices. Trends Food Sci Technol 20(3–4):137–145. doi:10.1016/j.tifs.2009.01.058 CrossRefGoogle Scholar
  88. 88.
    Turtoi M, Nicolau A (2007) Intense light pulse treatment as alternative method for mould spores destruction on paper-polyethylene packaging material. J Food Eng 83(1):47–53CrossRefGoogle Scholar
  89. 89.
    Vleugels M, Shama G, Deng XT, Greenacre E, Brocklehurst T, Kong MG (2005) Atmospheric plasma inactivation of biofilm-forming bacteria for food safety control. Plasma Sci IEEE Trans 33(2):824–828CrossRefGoogle Scholar
  90. 90.
    Von Keudell A, Awakowicz P, Benedikt J, Raballand V, Yanguas Gil A, Opretzka J, Flötgen C, Reuter R, Byelykh L, Halfmann H (2010) Inactivation of bacteria and biomolecules by low pressure plasma discharges. Plasma Process Polym 7(3–4):327–352. doi:10.1002/ppap.200900121 CrossRefGoogle Scholar
  91. 91.
    Wouters PC, Smelt JPPM (1997) Inactivation of microorganisms with pulsed electric fields: potential for food preservation. Food Biotechnol 11(3):193–229CrossRefGoogle Scholar
  92. 92.
    Yoon YH, Ryu KH (2007) Atmospheric plasma surface treatment equipment. News Inform Chem Eng 25:268–271Google Scholar
  93. 93.
    Yu H, Perni S, Shi J, Wang D, Kong M, Shama G (2006) Effects of cell surface loading and phase of growth in cold atmospheric gas plasma inactivation of Escherichia coli K12. J Appl Microbiol 101(6):1323–1330CrossRefGoogle Scholar
  94. 94.
    Yun H, Kim B, Jung S, Kruk ZA, Kim DB, Choe W, Jo C (2010) Inactivation of Listeria monocytogenes inoculated on disposable plastic tray, aluminum foil, and paper cup by atmospheric pressure plasma. Food Control 21(8):1182–1186. doi:10.1016/j.foodcont.2010.02.002 CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2011

Authors and Affiliations

  • N. N. Misra
    • 1
  • B. K. Tiwari
    • 2
  • K. S. M. S. Raghavarao
    • 3
  • P. J. Cullen
    • 1
  1. 1.School of Food Science and Environmental HealthDublin Institute of TechnologyDublin 1Ireland
  2. 2.Manchester Food Research CentreManchester Metropolitan UniversityManchesterUK
  3. 3.Department of Food Engineering, Central Food Technological Research InstituteCouncil for Scientific and Industrial Research (CSIR)MysoreIndia

Personalised recommendations