Food Engineering Reviews

, Volume 2, Issue 2, pp 74–94 | Cite as

Bioimpedance: A Review for Food Processing

Review Article


Electrical measurement is a simple innocuous tool for material characterization. Unlike for instance milk or dairy products, the majority of naturally grown food is composed of cells. The cells of meat or vegetables are surrounded by an insulating membrane, while the cytosol and the extracellular fluids are electrolytes. Despite the high permittivity of water, electrolytes behave like ohmic resistors up to hundreds of MHz. In contrast, membranes form capacitive elements due to their high resistance. The typical time constant for charging cell membranes is of the order of a microsecond. Thus, cells influence the impedance in a frequency range up to several MHz. At higher frequencies, the cytosolic content, i.e., macromolecules, gives rise to characteristic relaxation processes. Using the impedance in the microwave range where water dipoles show a distinct dispersion, humidity of dried matter can be addressed. Moreover, with sensitive measurement setup and proper models, one can determine the dry content in mashes and slurries as well. Several quality standards correlate well with the permeability of the membranes or the total water content. Because of the comparatively simple measurement of the electrical impedance together with advanced mathematical modeling, it is often a good approach in quality assessment of agricultural products. The change in conductivity of a culture medium contains information about the metabolism of incubated cells. Using specific culture media and time-lapse conductivity monitoring allows a high sensitivity and selectivity in microbial detection. Because the electrical impedance is very sensitive to the permeability of cell membranes, it is a great choice for the assessment of changes due to high voltage application. Today, many attempts to use impedance measurement in food technology show fast success in research but fail in practice. The reason is often an overestimation especially of the selectivity while underestimating the uncertainties in a harsh environment of a food-processing plant. Established, however, is the use of robust process measurement systems and the limitation of impedance measurement to applications with highly significant outcome or as supplemental measurement in a multiparameter approach. This review introduces the basics of bioimpedance measurement, points to sources of uncertainty, and presents successful applications in food industry.


Bioimpedance Food quality Drip loss Microbial detection Water content 


  1. 1.
    Agilent Technologies (2009) Agilent impedance measurement handbook: a guide to measurement and techniquesGoogle Scholar
  2. 2.
    Altmann M, Pliquett U (2010) Prediction of intramuscular fat by impedance spectroscopy. Meat Sci 72:666–671CrossRefGoogle Scholar
  3. 3.
    Angersbach A, Heinz V, Knorr D (1997) Elektrische Leitfähigkeit als Maß des Zellaufschlussgrades von zellularen Materialien durch Verarbeitungsprozesse. Lebensmittelverfahrenstechnik 42:195–200Google Scholar
  4. 4.
    Angersbach A, Heinz V, Knorr D (1999) Electrophysiological model of intact and processed plant tissues: cell disintegration criteria. Biotechnol Prog 15:753–762CrossRefGoogle Scholar
  5. 5.
    Basaran-Akgul N, Basaran P, Rasco BA (2008) Effect of temperature (−5 to 130 °C) and fiber direction on the dielectric properties of beef semitendinosus at radio frequency and microwave frequencies. J Food Sci 73:243–249CrossRefGoogle Scholar
  6. 6.
    Bertram HC, Purslow PP, Anderson HJ (2002) Relationship between meat structure, water mobility, and distribution: a low field nuclear magnetic resonance study. J Agric Food Chem 50:824–829CrossRefGoogle Scholar
  7. 7.
    Bone S (1988) Time domain reflectometry: the difference method applied to conductive aqueous solutions. Biochim Biophys Acta 967:401–407Google Scholar
  8. 8.
    Borgaard C (2003) Reflection mode microwave spectroscopy for on-line measurement of fat in trimmings, ICoMstGoogle Scholar
  9. 9.
    Bragos R, Gamez X, Cairo J, Riu J, Godia F (1999) Biomass monitoring using impedance spectroscopy. Ann N Y Acad Sci 873:299–305CrossRefGoogle Scholar
  10. 10.
    Bragos R, Rosell J, Riu P (1994) A wide-band AC-coupled current source for electrical impedance tomography. Physiol Meas 91–100Google Scholar
  11. 11.
    Chanet M, Riviere C, Eynard P (1999) Electric impedance spectrometry for the control of manufacturing process of comminuted meat products. J Food Eng 42:153–159CrossRefGoogle Scholar
  12. 12.
    Cole KS (1968) Membranes, ions and impulses. University of California Press, CaliforniaGoogle Scholar
  13. 13.
    Cole RH (1977) Time domain reflectometry. Annu Rev Biophys Biomol Struct 28:183–300Google Scholar
  14. 14.
    Cole RH, Berbarian JG, Mashimo S, Chryssikos G, Burns A, Tombari E (1989) Time domain reflections method for dielectric measurements to 10 GHz. J Appl Phys 66:793–802CrossRefGoogle Scholar
  15. 15.
    Cole RH, Mashimo S, Windsor P (1980) Evaluation of dielectric behavior by time domain spectroscopy. J Phys Chem 84:786–793CrossRefGoogle Scholar
  16. 16.
    Damez JL, Clerjon S, Abouelkaram S, Lepetit J (2008) Beef meat electrical impedance spectroscopy and anisotropy sensing for non-invasive early assessment of meat ageing. J Food Eng 85:122CrossRefGoogle Scholar
  17. 17.
    Daschner F (2002) Multivariate Messdatenverarbeitung Für Die Dielekrische Spektroskopie Mit Mikrowellen Zur Bestimmung Der Zusammensetzung Von Lebensmitteln. University of Kiel, KielGoogle Scholar
  18. 18.
    Davey CL, Davey HM, Kell DB (1993) Introduction to the dielectric estimation of cellular biomass in real time, with special emphasis on measurements at high volume fractions. Analytica Chemica Acta 279:155–161CrossRefGoogle Scholar
  19. 19.
    Falkenhagen H (1971) Theorie der Elektrolyte. S. Hirzel Verlag, LeipzigGoogle Scholar
  20. 20.
    Farag KW, Lyng JG, Morgan DJ, Cronin DA (2008) Dielectric and thermophysical properties of different beef meat blends over a temperature range of −18 to +10 °C. Meat Sci 79Google Scholar
  21. 21.
    Feldmann Y, Ermolina I, Hayashi Y (2003) Time domain spectroscopy study on biological systems. IEEE Trans Dielectr Electr Insul 10:728–753CrossRefGoogle Scholar
  22. 22.
    Firstenberg-Eden R, Zindulis J (1984) Electrochemical changes in media due to microbial growth. J Microbiol Meth 2:103–115CrossRefGoogle Scholar
  23. 23.
    Foster KR, Schwan HP (1989) Dielectric properties of tissues and biological materials: a critical review. CRC Crit Rev Biomed Eng 17:25–104Google Scholar
  24. 24.
    Fricke H, Morse S (1925) The electrical resistance and capacity of blood for frequencies between 800 Hz and 4.5 MHz. J Gen Physiol 9:153–167CrossRefGoogle Scholar
  25. 25.
    Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41:2231–2249CrossRefGoogle Scholar
  26. 26.
    Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: III parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293CrossRefGoogle Scholar
  27. 27.
    Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269CrossRefGoogle Scholar
  28. 28.
    Geddes LA (1996) Who introduced the tetrapolar method for measuring resistance and impedance? IEEE Eng Med Biol 133–134Google Scholar
  29. 29.
    Grimnes S, Martinsen OG (2000) Bioimpedance and bioelectricity basics. Academic Press, LondanGoogle Scholar
  30. 30.
    Hamann CH, Vielstich W (1998) Elektrochemie. Wiley-VCH Verlag GmbH, WeinheimGoogle Scholar
  31. 31.
    Harris CM, Todd RW, Bungard SJ, Lovitt RW, Morris JG, Kell DB (1987) Dielectric permittivity of microbial suspensions at radio frequencies: a novel method for estimation of microbial biomass. Enzyme Microb Technol 9:181–186CrossRefGoogle Scholar
  32. 32.
    Hegarty RS, McPhee MJ, Oddy VH, Thomas BJ, Ward LC (1998) Prediction of the chemical composition of lamb carcasses from multi-frequency impedance data. Brit J Nutr 79:169–176CrossRefGoogle Scholar
  33. 33.
    Hoeber R (1910) Eine Methode, die elektrische Leitfahigkeit im Innern von Zellen zu messen. Arch Ges Physiol 133:237–259CrossRefGoogle Scholar
  34. 34.
    Icier F, Baysal T (2004) Dielectric properties of food materials—1: factors affecting and industrial use. Crit Rev Food Sci Nutr 44:465–471CrossRefGoogle Scholar
  35. 35.
    Kent M, Knoechel R, Daschner F, Berger UK (2001) Composition of foods including added water using microwave dielectric spectra. Food Control 12:467–482CrossRefGoogle Scholar
  36. 36.
    Kent M, Knoechel R, Daschner R, Schimmer O, Oehlschlager J, Mirke-Klemeyer S, Barr U-K, Floberg P, Tejada M, Huidobro A, Nunes L, Batista I, Martins A (2004) Time domain reflectometry as a tool for the estimation of quality in foods. Int Agrophysics 18:225–229Google Scholar
  37. 37.
    Kent M, MacKenzie K, Berger UK (2000) Determination of prior treatment of fish and fish products using microwave dielectric spectra. Eur Food Res Technol 210:427–433CrossRefGoogle Scholar
  38. 38.
    Kent M, Oehlschlager J, Mierke-Klemeyer S, Manthey-Karl M, Knochel O, Daschner R, Schimmer O (2004) A new multivariate approach to the problem of fish quality estimation. Food Chem 87:531–535CrossRefGoogle Scholar
  39. 39.
    Kent M, Peymann A, Gabriel C, Knight A (2002) Determination of added water in prok products using microwave dielectric spectroscopy. Food Control 13:143–149CrossRefGoogle Scholar
  40. 40.
    Knoechel R, Daschner F, Taute W (2001) Resonant microwave sensors for instantaneous determination of moisture in foodstuffs. Food Control 12:447–458CrossRefGoogle Scholar
  41. 41.
    Krassen H, Pliquett U, Neumann E (2007) Nonlinear current voltage relationship of the plasma membrane of single CHO cells. Bioelectrochemistry 70:70–77CrossRefGoogle Scholar
  42. 42.
    Lebovka NI, Bazhal MI, Vorobiev E (2002) Estimation of characteristic damage time of food materials in pulsed-electric fields. J Food Eng 54:337–346CrossRefGoogle Scholar
  43. 43.
    Marchello MJ, Slanger WD (1994) Bioelectrical impedance can predict skeletal muscle and fat-free skeletal muscle of beef cows and their carcasses. J Anim Sci 72:3118–3123Google Scholar
  44. 44.
    Marchello MJ, Slanger WD, Carlson JK (1999) Bioelectrical impedance: fat content of beef and pork from different size grinds. J Anim Sci 77:2468Google Scholar
  45. 45.
    Merabet M, Bose TK (1988) Dielectric measurements of water in the radio and microwave frequencies by time domain reflectometry. J Chem Phys 92:6149CrossRefGoogle Scholar
  46. 46.
    Min M, Pliquett U, Nacke T, Barthel A, Annus P, Land R (2008) Broadband excitation for short-time impedance spectroscopy. Physiol Meas 29:185–192CrossRefGoogle Scholar
  47. 47.
    Nacke T, Barthel A, Friedrich J, Helbig M, Sachs J, Peyerl P, Pliquett U (2007) A new hard and software concept for impedance spectroscopy analyzers for broadband process measurements. In: Scharfetter H, Merva R (eds) Berlin-Heidelberg, Springer Verlag, ICEBI 2007, 17, pp 194–197Google Scholar
  48. 48.
    Nacke T, Bruckner K, Goller A, Kaufhold S, Nakos X, Noack S, Stober H, Beckmann D (2006) New type of dry substances content meter using microwaves for application in biogas plant. Anal Bioanal Chem 383:252–257Google Scholar
  49. 49.
    Nelson SO (1973) Electrical properties of agricultural products-a critical review. Trans ASAE 16:284–400Google Scholar
  50. 50.
    Nelson SO (1991) Dielectric properties of agricultural products—measurements and applications. CEIDP digest of literature on dielectrics. IEEE Trans Electr Insul 26:845–869CrossRefGoogle Scholar
  51. 51.
    Nelson SO, Bartley PG Jr (2002) Frequency and temperature dependence of the dielectric properties of food materials. Trans ASAE 45:1223–1227Google Scholar
  52. 52.
    Neumann E, Sowers A, Jordan C (1989) Electroporation and electrofusion in cell biology. Plenum Press, New YorkGoogle Scholar
  53. 53.
    Oliver MA, Gobantes I, Arnau J, Elvira J, Riu P, Grebol N, Monfort JM (2001) Evaluation of the electrical impedance spectroscopy (EIS) equipment for ham meat quality selection. Meat Sci 58:305–312CrossRefGoogle Scholar
  54. 54.
    Pethig R, Kell DB (1987) The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys Med Biol 32:933–970CrossRefGoogle Scholar
  55. 55.
    Pliquett F, Pliquett U (1998a) Stress action on tissue, detected by the Py-value. In: Riu PJ, Rosell J, Bragos R, Casas O (eds) Proceedings of the X. Int. Conf. on Electrical Bio-Impedance, Barcelona, Spain, Apr. 5–9 1998. Publications Office of UPC, Barcelona, SpainGoogle Scholar
  56. 56.
    Pliquett F, Pliquett U, Robekamp W (1990) Beurteilung der Reifung des M.long.dorsi und M.semitendenosus durch Impulsimpedanzmessungen. Fleischwirtschaft 70:1468–1470Google Scholar
  57. 57.
    Pliquett F, Pliquett U, Schoberlein L, Freywald KH (1995) Impedanzmessungen zur Charakterisierung der Fleischbeschaffenheit. Fleischwirtschaft 75:496–498Google Scholar
  58. 58.
    Pliquett U, Altmann M, Pliquett F, Sch”berlein L (2003) Py—a parameter for meat quality. Meat Sci 65:1429–1437CrossRefGoogle Scholar
  59. 59.
    Pliquett U, Gersing E, Pliquett F (2000) Evaluation of fast time-domain based impedance measurements on biological tissue. Biomed Techn 45:6–13CrossRefGoogle Scholar
  60. 60.
    Pliquett U, Krassen H, Frantescu CG, Wesner D, Neumann E, Schoenbach K (2005) Asymmetric changes in membrane conductance due to hyper- and depolarization: probing with current and voltage clamp. IFMBE Proc 11:1923Google Scholar
  61. 61.
    Pliquett U, Pliquett F (1998) Kritische Bemerkungen zur Leitfähigkeit als Qualitätsmerkmal für Fleisch. Fleischwirtschaft 78:1010–1012Google Scholar
  62. 62.
    Pliquett U, Schoenbach K (2009) Changes in electrical impedance of biological matter due to the application of ultrashort high voltage pulses. IEEE Trans Dielectr Electr Insul 16:1273–1279CrossRefGoogle Scholar
  63. 63.
    Ragheb AO, Geddes LA, Bourland JD, Tacker WA (1992) Tetrapolar electrode system for measuring physiological events by impedance. Med Biol Eng Comput 30:115–117CrossRefGoogle Scholar
  64. 64.
    Ragheb T, Geddes LA (1991) The polarization impedance of common electrode metals operated at low current density. Ann Biomed Eng 19:151–163CrossRefGoogle Scholar
  65. 65.
    Reineman DC, Helgren JM (2004) Online milk sensing issues for automatic milking. ASAE/CSAE Annual International Meeting, OntarioGoogle Scholar
  66. 66.
    Sachs J (2005) Principles of ultra-wideband sensors. In: Kupfer K (ed) Electromagnetic wave interaction with water and moist substances. Springer, BerlinGoogle Scholar
  67. 67.
    Sachs J, Peyerl P, Woeckel S (2007) Liquid and moisture sensing by ultra wideband pseudo noise sequence signals. Meas Sci Technol 18:1047–1087CrossRefGoogle Scholar
  68. 68.
    Schwan HP (1957) Electrical properties of tissue and cell suspensions. In: Lawrence JH, Tobias CA (eds) Academic Press, New YorkGoogle Scholar
  69. 69.
    Schwan HP (1963) Determination of biological impedances. In: Nastuk WL (ed) Physical techniques in biological research. Academic Press, New YorkGoogle Scholar
  70. 70.
    Swantek PM, Marchello MJ, Tilton JE, Crenshaw JD (1999) Prediction of fat-free mass of pigs from 50 to 130 kg live weight. J Anim Sci 77:897Google Scholar
  71. 71.
    Turner AP (1994) Biosensors. Curr Opin Biotechnol 5:49–53CrossRefGoogle Scholar
  72. 72.
    Vacher F, Alves F, Gilles-Pascaud C (2007) Eddy current nondestructive testing with giant magneto-impednace sensor. NDT E Int 40:439–442CrossRefGoogle Scholar
  73. 73.
    von Saint-George M, Riedel CH, Doessel O (2002) Design of a system for contact-free measurement of the conductivity of biological tissue. Biomed Tech Berl 47:794–797CrossRefGoogle Scholar
  74. 74.
    Vorobiev E, Lebovka NI (2008) Pulsed electric fields induced effects in plant tissue: fundamental aspects and prospectives of application. In: Vorobiev E, Lebovka NI (eds) Electrotechnologies for extraction from food plants, biomaterials. Springer, New YorkGoogle Scholar
  75. 75.
    Wang Y, Wig TD, Tang J, Hallberg LM (2003) Dielectric properties of food relevant to RF and microwave pasteurization and sterilization. J Food Eng 57:257–268CrossRefGoogle Scholar
  76. 76.
    Weaver JC (1993) Electroporation: a general phenomenon for manipulating cells and tissue. J. Cellular Biochem 51:426–435Google Scholar
  77. 77.
    Wunsch G (1970) Lineare systeme. VEB Verlag Technik, BerlinGoogle Scholar
  78. 78.
    Zhuang H, Nelson SO, Trabalski S, Savege EM (2007) Dielectric properties of uncooked chicken breast muscles from ten to one thousand eight hundred megahertz. Poultry Sci 86:2433–2440CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institut für Bioprozess- und Analysenmesstechnik e.V.Heilbad HeiligenstadtGermany

Personalised recommendations