Selected Applications of Ultrasonics in Food Processing

  • Raman Kumar Bhaskaracharya
  • Sandra Kentish
  • Muthupandian Ashokkumar


Ultrasonic processing in simple terms is the application of sound waves in the frequency range of 20 kHz–1 MHz which is above the range of human hearing. This review focuses on the applications of ultrasound to accelerate processes such as dehydration, drying, freezing and thawing, tenderization of meat, crystallization of lactose and fat and to improve processes such as cutting, extraction, emulsification, ageing of wines and esterification. The effect of ultrasound on physical properties such as viscosity, opacity, particle size and gel strength is also considered. We find that it is the physical effects of ultrasound that predominate in most applications considered to date. Ultrasound increases heat and mass transfer, disrupts aggregates and can break macromolecular chains.


Ultrasound Acoustic cavitation Food modifications Applications 


  1. 1.
    Albu S, Joyce E, Paniwnyk L et al (2004) Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry. Ultrason Sonochem 11:261–265CrossRefGoogle Scholar
  2. 2.
    Ashokkumar M, Mason T (2007) Sonochemistry. In: Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, New York. doi:10.1002/0471238961.1915141519211912.a01.pub2
  3. 3.
    Balachandran S, Kentish SE, Mawson R et al (2006) Ultrasonic enhancement of the supercritical extraction from ginger. Ultrason Sonochem 13:471–479CrossRefGoogle Scholar
  4. 4.
    Benedito J, Carcel JA, Gonzalez R et al (2002) Application of low intensity ultrasonics to cheese manufacturing processes. Ultrasonics 40:19–23CrossRefGoogle Scholar
  5. 5.
    Biss R, Cogan U (1996) Sulfur dioxide in acid environment facilitates corn steeping. Cereal Chem 73:40–44Google Scholar
  6. 6.
    Britten N (2008) Telegraph, Accessed 1 Oct 2008
  7. 7.
    Bund RK, Pandit AB (2007) Sonocrystallization: effect on lactose recovery and crystal habit. Ultrason Sonochem 14:143–152CrossRefGoogle Scholar
  8. 8.
    Caili F, Haijun T, Quanhong L et al (2006) Ultrasound-assisted extraction of xyloglucan from apple pomace. Ultrason Sonochem 13:511–516CrossRefGoogle Scholar
  9. 9.
    Canselier JP, Delmas H, Wilhelm AM et al (2002) Ultrasound emulsification—an overview. J Dispersion Sci Technol 23:333–349CrossRefGoogle Scholar
  10. 10.
    Cardoni A, MacBeath A, Lucas M (2006) Methods for reducing cutting temperature in ultrasonic cutting of bone. Ultrasonics 44:e37–e42CrossRefGoogle Scholar
  11. 11.
    Chang AC (2004) The effects of different accelerating techniques on maize wine maturation. Food Chem 86:61–68CrossRefGoogle Scholar
  12. 12.
    Chang AC (2005) Study of ultrasonic wave treatments for accelerating the ageing process in a rice alcoholic beverage. Food Chem 92:337–342CrossRefGoogle Scholar
  13. 13.
    Chang AC, Chen FC (2002) The application of 20 kHz ultrasonic waves to accelerate the ageing of different wines. Food Chem 79:501–506CrossRefGoogle Scholar
  14. 14.
    Chang AC, Hsu J-P (2006) A polynomial regression model for the response of various accelerating techniques on maize wine maturation. Food Chem 94:603–607CrossRefGoogle Scholar
  15. 15.
    Chow R, Blindt R, Chivers R et al (2005) A study on the primary and secondary nucleation of ice by power ultrasound. Ultrasonics 43:227–230CrossRefGoogle Scholar
  16. 16.
    Chow R, Blindt R, Kamp A et al (2004) The microscopic visualisation of the sonocrystallisation of ice using a novel ultrasonic cold stage. Ultrason Sonochem 11:245–250CrossRefGoogle Scholar
  17. 17.
    Correia LR, Mittal GS, Basir OA (2008) Ultrasonic detection of bone fragments in mechanically deboned chicken breasts. Innovative Food Sci Emerg Technol 9:109–115CrossRefGoogle Scholar
  18. 18.
    Cravotto G, Boffa L, Mantegna S et al (2008) Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason Sonochem 15:898–902Google Scholar
  19. 19.
    Crum LA (1995) Comments on the evolving field of sonochemistry by a cavitation physicist. Ultrason Sonochem 2:S147–S152CrossRefGoogle Scholar
  20. 20.
    Cucheval A, Chow RCY (2008) A study on the emulsion of oil by power ultrasound. Ultrason Sonochem 15:916–920CrossRefGoogle Scholar
  21. 21.
    de Castro LMD, Priego-Capote F (2007) Ultrasound assisted crystallization (sonocrystallization). Ultrason Sonochem 14:717–724CrossRefGoogle Scholar
  22. 22.
    de la Fuente-Blanco S, de Sarabia ERF, Acosta-Aparicio VM et al (2006) Food drying process by power ultrasound. Ultrasonics 44:e523–e527CrossRefGoogle Scholar
  23. 23.
    Deng Y, Zhao Y (2008) Effects of pulsed-vacuum and ultrasound on the osmodehydration kinetics and microstructure of apples (Fuji). J Food Eng 85:84–93CrossRefGoogle Scholar
  24. 24.
    Deng Y, Zhao Y (2008) Effect of pulsed vacuum and ultrasound osmopretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT-Food Sci Technol 41:1575–1585CrossRefGoogle Scholar
  25. 25.
    Elmehdi HM, Page JH, Scanlon MG (2003) Using ultrasound to investigate the cellular structure of bread crumb. J Cereal Sci 38:33–42CrossRefGoogle Scholar
  26. 26.
    Elvira L, Sampedro L, de Espinosa MF et al (2006) Eight channel ultrasonic device for non-invasive quality evaluation in packed milk. Ultrasonics 45:92–99CrossRefGoogle Scholar
  27. 27.
    Furukawa T, Ohta S (1983) Ultrasonic induced modification of flow properties of soy protein dispersion. Agri Biol Chem 47:745–750Google Scholar
  28. 28.
    Gallego JA, Rodriguez G, San Emeterio JL et al (1994) Electroacoustic unit for generating high sonic and ultrasonic intensities in gases and at interfaces. USPTO US Patent 5299175, USAGoogle Scholar
  29. 29.
    Gan TH, Hutchins DA, Billson DR (2002) Preliminary studies of a novel air-couples ultrasonic inspection system for food containers. J Food Eng 53:315–323Google Scholar
  30. 30.
    Gan TH, Pallav P, Hutchins DA (2006) Non-contact ultrasonics quality measurements of food products. J Food Eng 77:239–247CrossRefGoogle Scholar
  31. 31.
    Garcia-Perez JV, Carcel JA, de la Fuente-Blanco S et al (2006) Ultrasonic drying of food stuff in a fluidized bed: parametric study. Ultrasonics 44:e539–e543CrossRefGoogle Scholar
  32. 32.
    Hay TR, Rose JL (2003) Fouling detection in the food industry using ultrasonic guided waves. Food Control 14:481–488CrossRefGoogle Scholar
  33. 33.
    Hemwimol S, Pavasant P, Shotipruk A (2006) Ultrasound-assisted extraction of anthraquinones from roots of Morinda Citrifolia. Ultrason Sonochem 13:543–548CrossRefGoogle Scholar
  34. 34.
    Huang Q, Li L, Fu X (2007) Ultrasound effects on the structure and chemical reactivity of cornstarch granules. Starch/Staerke 59:371–378CrossRefGoogle Scholar
  35. 35.
    Jayasooriya SD, Torley PJ, D’arcy BR et al (2007) Effect of high power ultrasound and ageing on the physical properties of bovine Semitendinosus and Longissimus muscles. Meat Sci 75:628–639CrossRefGoogle Scholar
  36. 36.
    Kanegae M, Kou S, Okawa Y et al (1992) Ultrasonic degradation of high molecular weight components of gelatin. J Photographic Sci 40:187–189Google Scholar
  37. 37.
    Kissam AD, Nelson RW, Ngao J et al (1981) Water-thawing of fish using low frequency acoustics. J Food Sci 47:71–75CrossRefGoogle Scholar
  38. 38.
    Kentish SE, Wooster TJ, Ashokkumar M et al (2008) The use of ultrasonics for nanoemulsion preparation. Innov Food Sci Emerg Technol 9:170–175CrossRefGoogle Scholar
  39. 39.
    Kuijpers MWA, Van Eck D, Kemmere MF et al (2002) Cavitation-induced reactions in high-pressure carbon dioxide. Science 298:1969–1971CrossRefGoogle Scholar
  40. 40.
    Lee J, Kentish SE, Ashokkumar M (2005) The effect of surface-active solutes on bubble coalescence in the presence of ultrasound. J Phys Chem B109:5095–5099Google Scholar
  41. 41.
    Li B, Sun D-W (2002) Effect of power ultrasound on freezing rate during immersion freezing of potatoes. J Food Eng 55:277–282CrossRefGoogle Scholar
  42. 42.
    Lucas M, MacBeath A, McCulloch E et al (2006) A finite element model for ultrasonic cutting. Ultrasonics 44:e503–e509CrossRefGoogle Scholar
  43. 43.
    Lucas M, Petzing JN, Cardoni A et al (2001) Design and characterisation of ultrasonic cutting tools. Annl CIRP 50:149–152CrossRefGoogle Scholar
  44. 44.
    Luo Z, Fu X, He X et al (2008) Effect of ultrasonic treatment on the physicochemical properties of maize starches differing in amylose content. Starch/Staerke 60:646–653CrossRefGoogle Scholar
  45. 45.
    Lyng JG, Allen P, McKenna BM (1998) The effect on aspects of beef tenderness of pre- and post-rigor exposure to a high intensity ultrasound probe. J Sci Food Agric 78:308–314CrossRefGoogle Scholar
  46. 46.
    Machado MF, Oliveira FAR, Gekas V et al (1998) Kinetics of moisture uptake and soluble-solids loss by puffed breakfast cereals immersed in water. Int J Food Sci Technol 33:225–237Google Scholar
  47. 47.
    Martini S, Suzuki AH, Hartel RW (2008) Effect of high intensity ultrasound on crystallization behaviour of anhydrous milk fat. J Am Oil Chem Soc 85:621–628CrossRefGoogle Scholar
  48. 48.
    Mason TJ (2007) Developments in ultrasound—non-medical. Progress Biophys Mol Biol 93:166–175CrossRefGoogle Scholar
  49. 49.
    Mason TJ, Paniwnyk L, Lorimer JP (1996) The uses of ultrasound in food technology. Ultrason Sonochem 3:S253–S260CrossRefGoogle Scholar
  50. 50.
    Mason TJ, Riera E, Vercet A et al (2005) Application of ultrasound. Elsevier/Academic Press, LondonGoogle Scholar
  51. 51.
    McCausland L, Cains P (2003) Sonocrystallization—using ultrasound to improve crystallization products and processes. Chem Ind 5(2003):15–17Google Scholar
  52. 52.
    McClements JD (1995) Advances in the application of ultrasound in food analysis and processing. Trends in Food Sci Technol 6:293–299CrossRefGoogle Scholar
  53. 53.
    Miles CA, Morley MJ, Rendell M (1999) High power ultrasonic thawing of frozen foods. J Food Eng 39:151–159CrossRefGoogle Scholar
  54. 54.
    Mizrach A (2008) Ultrasonic technology for quality evaluation of fresh fruit and vegetables in pre- and postharvest processes. Postharvest Biol Technol 48:315–330CrossRefGoogle Scholar
  55. 55.
    Muthukumaran S, Kentish SE, Stevens GW et al (2006) Application of ultrasound in membrane separation processes: a review. Rev Chem Eng 22:155–194Google Scholar
  56. 56.
    Panchev IN, Kirtchev NA, Kratchnov CG (1988) Improving pectin technology II. Extraction using ultrasonic treatment. Int J Food Sci Technol 23:337–341Google Scholar
  57. 57.
    Panchev IN, Kirtchev NA, Kratchnov CG (1994) On the production of low esterified pectins by acid maceration of pectic raw materials with ultrasound treatment. Food Hydrocoll 8:9–17CrossRefGoogle Scholar
  58. 58.
    Patrick M, Blindt R, Janssen J (2004) The effect of ultrasonic intensity on the crystal structure of palm oil. Ultrason Sonochem 11:251–255CrossRefGoogle Scholar
  59. 59.
    Petit A-C, Noiret N, Guezennec J et al (2007) Ultrasonic depolymerisation of an exopolysaccharide produced by a bacterium isolated from a deep-sea hydrothermal vent polychaete annelid. Ultrason Sonochem 14:107–112CrossRefGoogle Scholar
  60. 60.
    Piyasena P, Mohareb E, McKellar RC (2003) Inactivation of microbes using ultrasound: a review. Int J Food Microbiol 87:207–216CrossRefGoogle Scholar
  61. 61.
    Pohlman FW, Dikeman ME, Zayas JF (1997) The effect of low intensity ultrasound treatment on shear properties, colour stability and shelf life of vacuum packaged beef semitendinosus and biceps femoris muscles. Meat Sci 45:329–337CrossRefGoogle Scholar
  62. 62.
    Povey MJW, Mason TJ (1998) Ultrasound in food processing. Springer, Blackie A & P, LondonGoogle Scholar
  63. 63.
    Raviyan P, Zhang Z, Feng H (2005) Ultrasonication for tomato pectinmethylesterase inactivation: effect of cavitation intensity and temperature on inactivation. J Food Eng 70:189–196CrossRefGoogle Scholar
  64. 64.
    Riera E, Gallego-Juarez JA, Mason TJ (2006) Airborne ultrasound for the precipitation of smokes and powders and the destruction of foams. Ultrason Sonochem 13:107–116Google Scholar
  65. 65.
    Roncales P, Cena P, Beltran J-A et al (1993) Ultrasonication of lamb skeletal muscle fibres enhances postmortem proteolysis. Zeitschrift für Lebensmittel-Untersuchung und -Forschung. A. Eur Food Res Technol 196:339–342Google Scholar
  66. 66.
    Schalfer O, Onyeche T, Bormann H et al (2002) Ultrasound stimulation of micro-organisms for enhanced biodegradation. Ultrasonics 40:25–29CrossRefGoogle Scholar
  67. 67.
    Schneider Y, Zahn S, Rohm H (2008) Power requirements of the high frequency generator in ultrasonic cutting of foods. J Food Eng 86:61–67CrossRefGoogle Scholar
  68. 68.
    Seshadri R, Weiss J, Hulbert GJ et al (2003) Ultrasonic processing influences rheological and optical properties of high-methoxyl pectin dispersions. Food Hydrocoll 17:191–197CrossRefGoogle Scholar
  69. 69.
    Sharma A, Gupta MN (2006) Ultrasonic pre-irradiation effect upon aqueous enzymatic oil extraction from almond and apricot seeds. Ultrason Sonochem 13:529–534CrossRefGoogle Scholar
  70. 70.
    Sigfusson H, Ziegler GR, Coupland JN (2004) Ultrasonic monitoring of food freezing. J Food Eng 62:263–269CrossRefGoogle Scholar
  71. 71.
    Siro I, Cs Ven, Balla C et al (2009) Application of an ultrasonic assisted curing technique for improving the diffusion of sodium chloride in procine meat. J Food Eng 91:353–362CrossRefGoogle Scholar
  72. 72.
    Stojanovic J, Silva JL (2006) Influence of osmocentration, continuous high frequency ultrasound and dehydration on properties and microstructure of rabbiteye blueberries. Drying Technol 24:165–171CrossRefGoogle Scholar
  73. 73.
    Strm A, Ribelles P, Lundin L et al (2007) Influence of pectin fine structure on the mechanical properties of calcium-pectin and acid-pectin gels. Biomacromolecules 8:2668–2674CrossRefGoogle Scholar
  74. 74.
    Sun DW, Li B (2003) Microstructural change of potato tissues frozen by ultrasound-assisted immersion freezing. J Food Eng 57:337–345CrossRefGoogle Scholar
  75. 75.
    Tang C-H (2007) Functional properties and in vitro digestibility of buckwheat protein products: Influence of processing. J Food Eng 82:568–576CrossRefGoogle Scholar
  76. 76.
    Teng M-Y, Lin S-H, Juang R-S (2006) Effect of ultrasound on the separation of binary protein mixtures by cross flow ultrafiltration. Desalination 200:280–282CrossRefGoogle Scholar
  77. 77.
    Vilkhu K, Mawson R, Simons L et al (2008) Applications and opportunities for ultrasound assisted extraction in the food industry—a review. Innov Food Sci Emerg Technol 9:161–169CrossRefGoogle Scholar
  78. 78.
    Wang L, Li D, Bao C et al (2008) Ultrasonic extraction and separation of anthraquinones from Rheum palmatum L. Ultrason Sonochem 15:738–746CrossRefGoogle Scholar
  79. 79.
    Wen B, Eli W, Xue Q et al (2007) Ultrasound accelerated esterification of palmitic acid with vitamin C. Ultrason Sonochem 14:213–218CrossRefGoogle Scholar
  80. 80.
    Wu H, Hulbert GJ, Mount JR (2001) Effects of ultrasound on milk homogenization and fermentation with yoghurt starter. Innov Food Sci Emerg Technol 1:211–218CrossRefGoogle Scholar
  81. 81.
    Zahn S, Schneider Y, Rohm H (2006) Ultrasonic cutting of foods: Effects of excitation magnitude and cutting velocity on the reduction of cutting work. Innov Food Sci Emerg Technol 7:288–293CrossRefGoogle Scholar
  82. 82.
    Zhang J, Gao Y, Guo H et al (2008) Preparing immunity-increasing polysaccharide from bulbus lilii. Faming Zhuanli Shenqing Gongkai Shuomingshu, AN: 2008: 116746. International Patent CN 101270167, Peoples Republic of China, 15 ppGoogle Scholar
  83. 83.
    Zhang L, Zelong L (2008) Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrason Sonochem 15:731–737CrossRefGoogle Scholar
  84. 84.
    Zhang Z, Niu Y, Eckhoff SR et al (2005) Sonication enhanced corn starch separation. Starch/Staerke 57:240–245CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Raman Kumar Bhaskaracharya
    • 1
  • Sandra Kentish
    • 2
  • Muthupandian Ashokkumar
    • 1
  1. 1.Particulate Fluids Processing CentreSchool of Chemistry, University of MelbourneMelbourneAustralia
  2. 2.Particulate Fluids Processing Centre, Department of Chemical and Biomolecular EngineeringUniversity of MelbourneMelbourneAustralia

Personalised recommendations