Food Engineering Reviews

, Volume 1, Issue 1, pp 66–83 | Cite as

Review of Design Engineering Methods and Applications of Active and Modified Atmosphere Packaging Systems

  • Rocio Rodriguez-Aguilera
  • Jorge C. Oliveira


Active packaging (AP) and modified atmosphere packaging (MAP) technologies are shelf-life extension techniques introduced in the last decades in the food industry as a response to the continuous changes in consumer demands and market trends. MAP relies on the modification of the surrounding gas composition solely from the interplay between product metabolism (respiration) and package permeability, while AP is a more innovative technique in which the packaging, or some element of it, also interacts actively with the product to achieve greater shelf-life extension or improve safety or sensory properties. It is possible to design such packages by trial and error, but the most suitable approach is to deploy design engineering methods, based on quantitative models relating the relevant factors influencing respiration rate and gas transfer and the MAP/AP systems. This text provides a review of these tools, as well as their main applications.


Antimicrobials Cheese Permeability Respiration rate Scavengers 



The authors would like to acknowledge funding from the Department of Agriculture, Fisheries and Food of the Government of the Republic of Ireland, within the framework of the Food Institutional Research Measure, under the National Development Plan 200-2006.


  1. 1.
    Ahvenainen R (2003) Active and intelligent packaging: an introduction. In: Ahvenainen R (ed) Novel food packaging techniques. Woodhead Publishing Ltd, Cambridge, UK, pp 5–21Google Scholar
  2. 2.
    Al-Ati T, Hotchkiss JH (2003) The role of packaging film permselectivity in modified atmosphere packaging. J Agric Food Chem 51:4133–4138CrossRefGoogle Scholar
  3. 3.
    Alves RMV, Sarantopoulos CIGDL, Dender AGFV, Faria JDAF (1996) Stability of sliced Mozzarella cheese in modified-atmosphere packaging. J Food Prot 59:838–844Google Scholar
  4. 4.
    Alves VD, Mali S, Beleia A, Grossmann MVE (2007) Effect of glycerol and amylose enrichment on cassava starch film properties. J Food Eng 78(3):941–946CrossRefGoogle Scholar
  5. 5.
    Artés F, Gómez PA, Artés-Hernández F (2006) Modified atmosphere packaging of fruits and vegetables. Stewart Postharvest Rev 2(5):1–13CrossRefGoogle Scholar
  6. 6.
    Arvanitoyannis I, Biliaderis CG, Ogawa H, Kawasaki N (1998) Biodegradable films made from low-density polyethylene (LDPE), rice starch and potato starch for food packaging applications: Part 1. Carbohydr Polym 36(2–3):89–104CrossRefGoogle Scholar
  7. 7.
    Berenzon S, Saguy IS (1998) Oxygen absorbers for extension of crakers shelf-life. Lebensm Wiss Technol 31:1–5CrossRefGoogle Scholar
  8. 8.
    Bertuzzi MA, Armada M, Gottifredi JC (2007) Physicochemical characterization of starch based films. J Food Eng 82(1):17–25CrossRefGoogle Scholar
  9. 9.
    Bhande SD, Ravindra MR, Goswami TK (2008) Respiration rate of banana fruit under aerobic conditions at different storage temperatures. J Food Eng 87(1):116–123CrossRefGoogle Scholar
  10. 10.
    Cha DS, Choi JH, Chinnan MS, Park HJ (2002) Antimicrobial films based on Na-alginate and k-carrageenan. Lebensm Wiss Technol 35(8):715–719CrossRefGoogle Scholar
  11. 11.
    Champagne CP, Soulignac L, Marcotte M, Innocent J-P (2003) Texture et evolution du pH de fromages de type Brie entreposes en atmosphere controlee. Lait 83:145–151CrossRefGoogle Scholar
  12. 12.
    Charles F, Sanchez J, Gontard N (2003) Active modified atmosphere packaging of fresh fruits and vegetables: modeling with tomatoes and oxygen absorber. J Food Sci 68(5):1736–1742CrossRefGoogle Scholar
  13. 13.
    Charles F, Anchez JS, Gontard N (2005) Modeling of active modified atmosphere packaging of endives exposed to several postharvest temperatures. J Food Sci 70(8):e443–e449CrossRefGoogle Scholar
  14. 14.
    Charles F, Sanchez J, Gontard N (2006) Absorption kinetics of oxygen and carbon dioxide scavengers as part of active modified atmosphere packaging. J Food Eng 72(1):1–7CrossRefGoogle Scholar
  15. 15.
    Chen X, Hertog MLATM, Banks NH (2000) The effect of temperature on gas relations in MA packages for capsicums (Capsicum annuum L., cv. Tasty): an integrated approach. Postharvest Biol Technol 20(1):71–80CrossRefGoogle Scholar
  16. 16.
    Choi JH, Choi WY, Cha DS, Chinnan MJ, Park HJ, Lee DS, Park JM (2005) Diffusivity of potassium sorbate in κ-carrageenan based antimicrobial film. Food Sci Technol 38(4):417–423Google Scholar
  17. 17.
    Cliffe-Byrnes V, O’ Beirne D (2007) Effects of gas atmosphere and temperature on the respiration rates of whole and sliced mushrooms (Agaricus bisporus); implications for film permeability in modified atmosphere packages. J Food Sci 72(4):E197–E204CrossRefGoogle Scholar
  18. 18.
    Coles R, McDowell D, Kirwan MJ (2003) Food packaging technology. Blackwell Publishing Ltd, Oxford, UKGoogle Scholar
  19. 19.
    Coma V, Martial-Gros A, Garreau S, Copinet A, Salin F, Deschamps A (2002) Edible antimicrobial films based on chitosan matrix. J Food Sci 67(3):1162–1169CrossRefGoogle Scholar
  20. 20.
    Coupland JN, Shaw NB, Monahan FJ, Dolores O’Riordan E, O’Sullivan M (2000) Modeling the effect of glycerol on the moisture sorption behavior of whey protein edible films. J Food Eng 43(1):25–30CrossRefGoogle Scholar
  21. 21.
    Cuq B, Gontard N, Cuq J-L, Guilbert S (1996) Functional properties of myofibrillar protein-based biopackaging as affected by film thickness. J Food Sci 61:580–584CrossRefGoogle Scholar
  22. 22.
    de Oliveira TM, de Fátima Ferreira Soares N, Pereira RM, de Freitas Fraga K (2007) Development and evaluation of antimicrobial natamycin-incorporated film in gorgonzola cheese conservation. Packaging Technol Sci 20(2):147–153CrossRefGoogle Scholar
  23. 23.
    Del-Valle V, Almenar E, Lagaron JM, Catala R, Gavara R (2003) Modelling permeation through porous polymeric films for modified atmosphere packaging. Food Additives and Contaminants 20:170–179CrossRefGoogle Scholar
  24. 24.
    Dermiki M, Ntzimani A, Badeka A, Savvaidis IN, Kontominas MG (2008) Shelf-life extension and quality attributes of the whey cheese “Myzithra Kalathaki” using modified atmosphere packaging. LWT—Food Sci Technol 41(2):284–294Google Scholar
  25. 25.
    Desobry S, Hardy J (1994) Camembert cheese water loss through absorbent packaging. J Food Sci 59:986–989CrossRefGoogle Scholar
  26. 26.
    Duan J, Park SI, Daeschel MA, Zhao Y (2007) Antimicrobial chitosan-lysozyme (CL) films and coatings for enhancing microbial safety of Mozzarella cheese. J Food Sci 72:M355–M362CrossRefGoogle Scholar
  27. 27.
    Elayedath S, Barringer SA (2002) Electrostatic powder coating of shredded cheese with antimycotic and anticaking agents. Innovative Food Sci Emerging Technol 3(4):385–390CrossRefGoogle Scholar
  28. 28.
    Eliot SC, Vuillemard JC, Emond JP (1998) Stability of shredded Mozzarella cheese under modified atmospheres. J Food Sci 63(6):1075–1080Google Scholar
  29. 29.
    Emond JP, Castaigne F, Toupin CJ, Desilets D (1991) Mathematical modeling of gas exchange in modified atmosphere packaging. Trans ASAE 34(1):239–245Google Scholar
  30. 30.
    Exama A, Arul J, Lencki RW, Lee LZ, Toupin C (1993) Suitability of plastic films for modified atmosphere packaging of fruits and vegetables. J Food Sci 58:1365–1370CrossRefGoogle Scholar
  31. 31.
    Fama L, Rojas AM, Goyanes S, Gerschenson L (2005) Mechanical properties of tapioca-starch edible films containing sorbates. LWT—Food Sci Technol 38(6):631–639Google Scholar
  32. 32.
    Favati F, Galgano F, Pace AM (2007) Shelf-life evaluation of portioned Provolone cheese packaged in protective atmosphere. LWT—Food Sci Technol 40(3):480–488Google Scholar
  33. 33.
    Fishman S, Rodov V, Ben-Yehoshua S (1996) Mathematical model for perforation effect on oxygen and water vapor dynamics in modified-atmosphere packages. J Food Sci 61:956–961CrossRefGoogle Scholar
  34. 34.
    Flores S, Haedo A, Campos C, Gerschenson L (2006) Antimicrobial performance of potassium sorbate supported in tapioca starch edible films. Eur Food Res Technol 225:1–10Google Scholar
  35. 35.
    Floros JD, Matsos KI (2005) Introduction to modified atmosphere packaging. In: Han JH (ed) Innovations in food packaging. Elsevier, Oxford, UK, pp 159–172CrossRefGoogle Scholar
  36. 36.
    Floros JD, Nielsen PV, Farkas JK (2000) Advances in modified atmosphere and active packaging with applications in the dairy industry. Bulleting of the IDF 346:22–28Google Scholar
  37. 37.
    Fonseca SC, Oliveira FAR, Brecht JK (2002) Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: a review. J Food Eng 52(2):99–119CrossRefGoogle Scholar
  38. 38.
    Fonseca SC, Oliveira FAR, Frias JM, Brecht JK, Chau KV (2002) Modelling respiration rate of shredded Galega kale for development of modified atmosphere packaging. J Food Eng 54(4):299–307CrossRefGoogle Scholar
  39. 39.
    Fonseca SC, Oliveira FAR, Lino IBM, Brecht JK, Chau KV (2000) Modelling O2 and CO2 exchange for development of perforation-mediated modified atmosphere packaging. J Food Eng 43(1):9–15CrossRefGoogle Scholar
  40. 40.
    Franssen LR, Rumsey TR, Krochta JM (2004) Whey protein film composition effects on Potassium Sorbate and Natamycin diffusion. J Food Sci 69(5):C347–C350Google Scholar
  41. 41.
    Garcia MA, Pinotti A, Zaritzky NE (2006) Physicochemical, water vapor barrier and mechanical properties of corn starch and chitosan composite films. Starch—Stärke 58(9):453–463CrossRefGoogle Scholar
  42. 42.
    Ghanbarzadeh B, Oromiehie AR, Musavi M, Falcone PM, D-Jomeh ZE, Rad ER (2007) Study of mechanical properties, oxygen permeability and AFM topography of zein films plasticized by polyols. Packaging Technol Sci 20(3):155–163CrossRefGoogle Scholar
  43. 43.
    Gill CO, McGinnis JC (1995) The use of oxygen scavengers to prevent the transient discolouration of ground beef packaged under controlled, oxygen-depleted atmospheres. Meat Sci 41(1):19–27CrossRefGoogle Scholar
  44. 44.
    Gnanasambandam R, Hettiarachchy NS, Coleman M (1997) Mechanical and barrier properties of rice bran films. J Food Sci 62(2):395–398CrossRefGoogle Scholar
  45. 45.
    Gonzalez-Fandos E, Sanz S, Olarte C (2000) Microbiological, physicochemical and sensory characteristics of Cameros cheese packaged under modified atmospheres. Food Microbiol 17(4):407–414CrossRefGoogle Scholar
  46. 46.
    Göran F (1997) Determination of oxygen and water vapour in modified atmosphere packages for meat sausages with and without an oxygen absorber. Packaging Technol Sci 10:1–13CrossRefGoogle Scholar
  47. 47.
    Guynot ME, Sanchis V, Ramos AJ, Marin S (2003) Mold-free shelf-life extension of bakery products by active packaging. J Food Sci 68(8):2547–2552CrossRefGoogle Scholar
  48. 48.
    Han C, Zhao Y, Leonard SW, Traber MG (2004) Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria x ananassa) and raspberries (Rubus ideaus). Postharvest Biol Technol 33(1):67–78CrossRefGoogle Scholar
  49. 49.
    Han JH, Gennadios A (2005) Edible films and coatings: a review. In: Han JH (ed) Innovations in food packaging. Elsevier Ltd, Oxford, UK, pp 239–262CrossRefGoogle Scholar
  50. 50.
    Hertog MLATM, Lammertyn J, Desmet M, Scheerlinck N, Nicolai BM (2004) The impact of biological variation on postharvest behaviour of tomato fruit. Postharvest Biol Technol 34(3):271–284CrossRefGoogle Scholar
  51. 51.
    Hertog MLATM, Lammertyn J, Scheerlinck N, Nicolai BM (2007) The impact of biological variation on postharvest behaviour: the case of dynamic temperature conditions. Postharvest Biol Technol 43(2):183–192CrossRefGoogle Scholar
  52. 52.
    Hertog MLATM, Peppelenbos HW, Evelo RG, Tijskens LMM (1998) A dynamic and generic model of gas exchange of respiring produce: the effects of oxygen, carbon dioxide and temperature. Postharvest Biol Technol 14(3):335–349CrossRefGoogle Scholar
  53. 53.
    Hertog MLATM, Scheerlinck N, Lammertyn J, Nicolai BM (2007) The impact of biological variation on postharvest behaviour of Belgian endive: the case of multiple stochastic variables. Postharvest Biol Technol 43(1):78–88CrossRefGoogle Scholar
  54. 54.
    Hirata T, Makino Y, Ishikawa Y, Katsuura S, Hasegawa Y (1996) A theoretical model for designing modified atmosphere packaging with a perforation. Trans ASAE 39(4):1499–1504Google Scholar
  55. 55.
    Holm VK, Mortensen G, Vishart M, Petersen MA (2006) Impact of poly-lactic acid packaging material on semi-hard cheese. Int Dairy J 16:931–939CrossRefGoogle Scholar
  56. 56.
    Isdell E, Allen P, Doherty AM, Butler F (1999) Colour stability of six beef muscles stored in a modified atmosphere mother pack system with oxygen scavengers. Int J Food Sci Technol 34(1):71–80CrossRefGoogle Scholar
  57. 57.
    Kampf N, Nussinovitch A (2000) Hydrocolloid coating of cheeses. Food Hydrocolloids 14(6):531–537CrossRefGoogle Scholar
  58. 58.
    Kosikowski FV, Brown DP (1972) Influence of Carbon Dioxide and Nitrogen on microbial populations and shelf life of cottage cheese and sour cream. J Dairy Sci 56:12–18CrossRefGoogle Scholar
  59. 59.
    Lakakul R, Beaudry RM, Hernandez RJ (1999) Modeling respiration of apple slices in modified-atmosphere packages. J Food Sci 64(1):105–110CrossRefGoogle Scholar
  60. 60.
    Lamikanra O (2002) Fresh cut fruits and vegetables; science, technology and market. CRC Press LLC, Boca Raton, FLGoogle Scholar
  61. 61.
    Laohakunjit N, Noomhorm A (2004) Effect of plasticizers on mechanical and barrier properties of rice starch film. Starch 56:348–356CrossRefGoogle Scholar
  62. 62.
    Lee DS, Haggar PE, Lee J, Yam KL (1991) Model for fresh produce respiration in modified atmospheres based on principles on enzyme kinetics. J Food Sci 56:1580–1585CrossRefGoogle Scholar
  63. 63.
    Lee DS, Kang JS, Renault P (2000) Dynamics of internal atmosphere and humidity in perforated packages of peeled garlic cloves. Int J Food Sci Technol 35(5):455–464CrossRefGoogle Scholar
  64. 64.
    Lee DS, Renault P (1998) Using pinholes as tools to attain optimum modified atmospheres in packages of fresh produce. Packaging Technol Sci 11(3):119–130CrossRefGoogle Scholar
  65. 65.
    Limjaroen P, Ryser E, Lockhart H, Harte B (2005) Inactivation of Listeria monocytogenes on beef bologna and Cheddar cheese using polyvinyl-idene chloride films containing sorbic acid. J Food Sci 70(5):M267–M271Google Scholar
  66. 66.
    Liu Z, Han JH (2005) Film-forming characteristics of starches. J Food Sci 70(1):E31–E36Google Scholar
  67. 67.
    Longares A, Monahan FJ, O’Riordan ED, O’Sullivan M (2004) Physical properties and sensory evaluation of WPI films of varying thickness. Lebensm Wiss Technol 37(5):545–550CrossRefGoogle Scholar
  68. 68.
    Longares A, Monahan FJ, O’Riordan ED, O’Sullivan M (2005) Physical properties of edible films made from mixtures of sodium caseinate and WPI. Int Dairy J 15(12):1255–1260CrossRefGoogle Scholar
  69. 69.
    Lourdin D, Valle GD, Colonna P (1995) Influence of amylose content on starch films and foams. Carbohydr Polym 27(4):261–270CrossRefGoogle Scholar
  70. 70.
    Mahajan PV, Oliveira FAR, Montanez JC, Frias J (2007) Development of user-friendly software for design of modified atmosphere packaging for fresh and fresh-cut produce. Innovative Food Sci Emerging Technol 8(1):84–92CrossRefGoogle Scholar
  71. 71.
    Makino Y, Iwasaki K-i, Hirata T (1997) Application of transition state theory in model development for temperature dependence of respiration of fresh produce. J Agric Eng Res 67(1):47–59CrossRefGoogle Scholar
  72. 72.
    Makino Y, Iwasaki K, Hirata T (1996) A theoretical model for Oxygen consumption in fresh produce under an atmosphere with Carbon dioxide. J Agric Eng Res 65(3):193–203CrossRefGoogle Scholar
  73. 73.
    Mali S, Grossmann MVE, Garcia MA, Martino MN, Zaritzky NE (2002) Microstructural characterization of yam starch films. Carbohydr Polym 50(4):379–386CrossRefGoogle Scholar
  74. 74.
    Mali S, Grossmann MVE, Garcia MA, Martino MN, Zaritzky NE (2005) Mechanical and thermal properties of yam starch films. Food Hydrocolloids 19(1):157–164CrossRefGoogle Scholar
  75. 75.
    Mali S, Grossmann MVE, Garcia MA, Martino MN, Zaritzky NE (2006) Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. J Food Eng 75(4):453–460CrossRefGoogle Scholar
  76. 76.
    Maniar AB, Marcy JE, Bishop JR, Duncan SE (1994) Modified atmosphere packaging to maintain direct-set cottage cheese quality. J Food Sci 59:1305–1308CrossRefGoogle Scholar
  77. 77.
    Mannheim CH, Soffer T (1996) Shelf-life extension of Cottage cheese by modified atmosphere packaging. Lebensm Wiss Technol 29(8):767–771CrossRefGoogle Scholar
  78. 78.
    Marzo SD, Monaco RD, Cavella S, Romano R, Borriello I, Masi P (2006) Correlation between sensory and instrumental properties of Canestrato Pugliese slices packed in biodegradable films. Trends Food Sci Technol 17(4):169–176CrossRefGoogle Scholar
  79. 79.
    Mathew S, Brahmakumar M, Abraham TE (2006) Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch-chitosan blend films. Biopolymers 82(2):176–187CrossRefGoogle Scholar
  80. 80.
    McHugh TH, Krochta JM (1994) Sorbitol- vs glycerol-plasticized Whey Protein edible films: integrated Oxygen permeability and tensile property evaluation. J Agric Food Chem 42:841–845CrossRefGoogle Scholar
  81. 81.
    McMillin K (2008) Where is MAP Going? A review and future potential of modified atmosphere packaging for meat. J Meat Sci 80(1):43–65CrossRefGoogle Scholar
  82. 82.
    Mehyar GF, Han JH (2004) Physical and mechanical properties of high-amylose rice and pea starch films as affected by relative humidity and plasticizer. J Food Sci 69(9):E449–E454Google Scholar
  83. 83.
    Mei Y, Zhao Y (2003) Barrier and mechanical properties of milk protein-based edible films containing nutraceuticals. J Agric Food Chem 51:1914–1918CrossRefGoogle Scholar
  84. 84.
    Miltz J, Rydlo T, Mor A, Polyakov V (2006) Potency evaluation of a dermaseptin S4 derivative for antimicrobial food packaging applications. Packaging Technol Sci 19(6):345–354CrossRefGoogle Scholar
  85. 85.
    Mullan M, McDowell D (2003) Modified atmosphere packaging. In: Coles R, McDowell D, Kirwan MJ (eds) Food Packaging Technology. Blackwell Publishing Ltd, Oxford, UK, pp 303–339Google Scholar
  86. 86.
    Nobile MA, Buonocore GG, Conte A (2004) Oscillatory sorption tests for determining the water-transport properties of chitosan-based edible films. J Food Sci 69(1):FEP44–FEP49CrossRefGoogle Scholar
  87. 87.
    Ohlsson T, Bengtsson N (2002) Minimal processing technologies in the food industry. Woodhead Publishing Ltd, Cambridge, UKGoogle Scholar
  88. 88.
    Olarte C, Gonzalez-Fandos E, Sanz S (2001) A proposed methodology to determine the sensory quality of a fresh goat’s cheese (Cameros cheese): application to cheeses packaged under modified atmospheres. Food Quality and Preference 12(3):163–170CrossRefGoogle Scholar
  89. 89.
    Oliveira FAR, Fonseca SC, Oliveira JC, Brecht JK, Chau KV (1998) Development of perforation-mediated modified atmosphere packaging to preserve fresh fruit and vegetable quality after harvest/Envasado em atmosfera modificada y peliculas perforadas para preservar la calidad de frutas y verduras frescas despues de su cosecha. Food Sci Technol Int 4(5):339–352CrossRefGoogle Scholar
  90. 90.
    Ozdemir I, Monnet F, Gouble B (2005) Simple determination of the O2 and CO2 permeances of microperforated pouches for modified atmosphere packaging of respiring foods. Postharvest Biol Technol 36(2):209–213CrossRefGoogle Scholar
  91. 91.
    Pantaleao I, Pintado MME, Pocas MFF (2007) Evaluation of two packaging systems for regional cheese. Food Chem 102(2):481–487CrossRefGoogle Scholar
  92. 92.
    Papaioannou G, Chouliara I, Karatapanis AE, Kontominas MG, Savvaidis IN (2007) Shelf-life of a Greek whey cheese under modified atmosphere packaging. Int Dairy J 17(4):358–364CrossRefGoogle Scholar
  93. 93.
    Paul DR, Clarke R (2002) Modeling of modified atmosphere packaging based on designs with a membrane and perforations. J Membrane Sci 208(1–2):269–283CrossRefGoogle Scholar
  94. 94.
    Petracek PD, Joles DW, Shirazi A, Cameron AC (2002) Modified atmosphere packaging of sweet cherry (Prunus avium L., ev. `Sams’) fruit: metabolic responses to oxygen, carbon dioxide, and temperature. Postharvest Biol Technol 24(3):259–270CrossRefGoogle Scholar
  95. 95.
    Piergiovanni L, Fava P, Moro M (1993) Shelf-life extension of Taleggio cheese by modified atmosphere packaging. Italian J Food Sci 2:115–127Google Scholar
  96. 96.
    Pintado ME, Malcata FX (2000) Optimization of modified atmosphere packaging with respect to physicochemical characteristics of Requeijao. Food Res Int 33(10):821–832CrossRefGoogle Scholar
  97. 97.
    Pranoto Y, Rakshit SK, Salokhe VM (2005) Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT—Food Sci Technol 38(8):859–865Google Scholar
  98. 98.
    Pranoto Y, Salokhe VM, Rakshit SK (2005) Physical and antibacterial properties of alginate-based edible film incorporated with garlic oil. Food Res Int 38(3):267–272CrossRefGoogle Scholar
  99. 99.
    Ratti C, Rabie HR, Raghavan GSV (1998) Modelling modified atmosphere storage of fresh cauliflower using diffusion channels. J Agric Eng Res 69:343–350CrossRefGoogle Scholar
  100. 100.
    Renault P, Souty M, Chambroy Y (1994) Gas exchange in modified atmosphere packaging. 1: A new theoretical approach for micro-perforated packs. Int J Food Sci Technol 29(4):365–378Google Scholar
  101. 101.
    Rhim J-W (2004) Physical and mechanical properties of water resistant sodium alginate films. Lebensm Wiss Technol 37(3):323–330CrossRefGoogle Scholar
  102. 102.
    Rocculli P, Nobile MAD, Romani S, Baiano A, Rosa MD (2006) Use of a simple mathematical model to evaluate dipping and MAP effects on aerobic respiration of minimally processed apples. J Food Eng 76:334–340CrossRefGoogle Scholar
  103. 103.
    Rojas-Grau MA, Tapia MS, Rodriguez FJ, Carmona AJ, Martin-Belloso O (2007) Alginate and gellan-based edible coatings as carriers of antibrowning agents applied on fresh-cut Fuji apples. Food Hydrocolloids 21(1):118–127CrossRefGoogle Scholar
  104. 104.
    Romani S, Sacchetti G, Pittia P, Pinnavaia GG, Rosa MD (2002) Physical, chemical, textural and sensorial changes of portioned Parmigiano Reggiano cheese packed under different conditions. Int J Food Sci Technol 8:203–211CrossRefGoogle Scholar
  105. 105.
    Rooney ML (2005) Oxygen-scavenging packaging. In: Han JH (ed) Innovations in food packaging. Elsevier Ltd, Oxford, UK, pp 123–137CrossRefGoogle Scholar
  106. 106.
    Rosenthal I, Rosen B, Bernstein S, Popel G (1991) Preservation of fresh cheeses in a CO2-enriched atmosphere. Milchwissenschaft 46:706–708Google Scholar
  107. 107.
    Scannell AGM, Hill C, Ross RP, Marx S, Hartmeier W, Arendt EK (2000) Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin(R). Int J Food Microbiol 60(2–3):241–249CrossRefGoogle Scholar
  108. 108.
    Schlimme D, Rooney M (1994) Packaging of minimally processed fruits and vegetables. In: Wiley RC (ed) Minimally processed refrigerated fruits and vegetables. Springer, New York, pp 135–182Google Scholar
  109. 109.
    Schou M, Longares A, Montesinos-Herrero C, Monahan FJ, O’Riordan D, O’Sullivan M (2005) Properties of edible sodium caseinate films and their application as food wrapping. LWT—Food Sci Technol 38(6):605–610Google Scholar
  110. 110.
    Scott CR, Smith HO (1971) Cottage cheese shelf life and special gas atmospheres. J Food Sci 36:78–80CrossRefGoogle Scholar
  111. 111.
    Silva FM, Chau KV, Brecht JK, Sargent SA (1999) Tubes for modified atmosphere packaging of fresh fruits and vegetables: effective permeability measurement. Appl Eng Agric 15(4):313–318Google Scholar
  112. 112.
    Skinner GE, Reddy NR (2006) Hazards associated with Clostridium botulinum in modified atmosphere packaging of fresh fish and fishery products. In: Otwell WS, Kristinsson HG, Balabang MO (eds) Modified atmospheric processing and packaging of fish. Blackwell Pub, Oxford, UKGoogle Scholar
  113. 113.
    Sivertsvik M, Rosnes JT, Bergslien H (2002) Modified atmosphere packaging. In: Ohlsson T, Bengtsson N (eds) Minimal processing technologies in the food industry. Woodhead Publishing Ltd, Cambridge, UK, pp 61–86Google Scholar
  114. 114.
    Soares NFF, Rutishauser DM, Melo N, Cruz RS, Andrade NJ (2002) Inhibition of microbial growth in bread through active packaging. Packaging Technol Sci 15(3):129–132CrossRefGoogle Scholar
  115. 115.
    Sobral PJDA (2000) Influencia da espessura de biofilmes feitos a base de proteinas miofibrilares sobre suas propiedades funcionais. Pesq Agropec Bras 35:1251–1259Google Scholar
  116. 116.
    Sothornvit R, Krochta JM (2005) Plasticizers in edible films and coatings. In: Han JH (ed) Innovations in food packaging. Elsevier Ltd, Oxford, UK, pp 403–433CrossRefGoogle Scholar
  117. 117.
    Sothornvit R, Pitak N (2007) Oxygen permeability and mechanical properties of banana films. Food Res Int 40(3):365–370CrossRefGoogle Scholar
  118. 118.
    Srinivasa PC, Ramesh MN, Kumar KR, Tharanathan RN (2004) Properties of chitosan films prepared under different drying conditions. J Food Eng 63(1):79–85CrossRefGoogle Scholar
  119. 119.
    Talasila PC, Cameron AC (1995) Modeling frequency distribution of steady-state O2 partial pressures in modified-atmosphere packages. J Food Process Eng 18:199–217CrossRefGoogle Scholar
  120. 120.
    Talasila PC, Chau KV, Brecht JK (1992) Effects of gas concentrations and temperature on O2 consumption of strawberries. Trans ASAE 35:221–224Google Scholar
  121. 121.
    Talasila PC, Chau KV, Brecht JK (1995) Modified atmosphere packaging under varying surrounding temperature. Trans ASAE 38(3):869–876Google Scholar
  122. 122.
    Talja RA, Helen H, Roos YH, Jouppila K (2008) Effect of type and content of binary polyol mixtures on physical and mechanical properties of starch-based edible films. Carbohydr Polym 71(2):269–276CrossRefGoogle Scholar
  123. 123.
    Tareq A-A, Hotchkiss JH (2002) Application of packaging and modified atmosphere to fresh-cut fruits and vegetables. In: Lamikanra O (ed) Fresh cut fruits and vegetables. Science, technology and market. CRC Press, Boca Raton, FL, p 480Google Scholar
  124. 124.
    Vermeiren L, Devlieghere F, van Beest M, de Kruijf N, Debevere J (1999) Developments in the active packaging of foods. Trends Food Sci Technol 10(3):77–86CrossRefGoogle Scholar
  125. 125.
    Vermeiren L, Heirlings L, Devlieghere F, Debevere J (2003) Oxygen, ethylene and other scavengers. In: Ahvenainen R (ed) Novel food packaging techniques. Woodhead Publishing Ltd, Cambridge, UK, pp 22–49Google Scholar
  126. 126.
    Wang L, Liu L, Holmes J, Huang J, Kerry JF, Kerry JP (2008) Effect of pH and addition of corn oil on the properties of whey protein isolate-based films using response surface methodology. Int J Food Sci Technol 43(5):787–796CrossRefGoogle Scholar
  127. 127.
    Wang LZ, Liu L, Holmes J, Kerry JF, Kerry JP (2006) Assessment of film-forming potential and properties of protein and polysaccharide-based biopolymer films. Int J Food Sci Technol 42:1128–1138Google Scholar
  128. 128.
    Weng Y-M, Hotchkiss JH (1992) Inhibition of surface molds on cheese by Polyethylene film containing the antimycotic Imazalil. J Food Protection 55:367–369Google Scholar
  129. 129.
    Yam KL, Takhistov PT, Miltz J (2005) Intelligent packaging: concepts and applications. J Food Sci 70:R1–R10CrossRefGoogle Scholar
  130. 130.
    Zactiti EM, Kieckbusch TG (2006) Potassium sorbate permeability in biodegradable alginate films: Effect of the antimicrobial agent concentration and crosslinking degree. J Food Eng 77(3):462–467CrossRefGoogle Scholar
  131. 131.
    Zamudio-Flores PB, Vargas-Torres A, Perez-Gonzalez J, Bosquez-Molina E, Bello-Perez LA (2006) Films prepared with oxidized banana starch: mechanical and barrier properties. Starch 58:274–282CrossRefGoogle Scholar
  132. 132.
    Zhu M, Chu CL, Wang SL, Lencki RW (2001) Influence of Oxygen, Carbon Dioxide and degree of cutting on the respiration rate of Rutabaga. J Food Sci 66:30–37Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Process & Chemical EngineeringUniversity College CorkCorkIreland

Personalised recommendations