Journal of Plant Biology

, Volume 62, Issue 1, pp 82–91 | Cite as

Rice RHC Encoding a Putative Cellulase is Essential for Normal Root Hair Elongation

  • Sunok Moon
  • Anil Kumar Nalini Chandran
  • Yu-Jin Kim
  • Yunshil Gho
  • Woo-Jong Hong
  • Gynheung An
  • Chanhui LeeEmail author
  • Ki-Hong JungEmail author
Original Article


Root hairs are tubular shaped protuberances of root epidermal cells and are found in nearly all vascular plants. Co-ordinate expression of a number of root hair morphogenesis genes involved in cytoskeleton reorganization, changes in homeostasis and distribution of ion gradients, and cell wall reassembly are required during root hair cell elongation. In this report, we have characterized a root hairspecific putative cellulase gene in rice, OsRHC. OsRHC is specifically expressed in elongating root hairs and OsRHC is targeted to the plasma membrane. The mutation of the OsRHC gene by a T-DNA knock-out and CRISPR-Cas9 system causes a severe reduction in root hair length. Bimolecular fluorescence complementation analysis demonstrated that the OsRHC protein interacts with a root hair-specific cellulose synthase protein (OsCSLD1) in the plasma membrane. Furthermore, we observed a moderate reduction of cellulose content in the osrhc mutant. Our results suggest that the plasma membrane-localized OsRHC plays a critical role in cell wall remodeling during root hair extension.


Cellulase Cellulose Rice Rice T-DNA Root hairs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12374_2018_393_MOESM1_ESM.docx (4.5 mb)
Supplementary material, approximately 4657 KB.


  1. Becker JD, Takeda S, Borges F, Dolan L, Feijo JA (2014). Transcriptional profiling of Arabidopsis root hair and pollen defines an apical cell growth signature. BMC Plant Biol 14:197Google Scholar
  2. Bhosale R, Giri J, Pandey BK, Giehl RFH, Hartmann A, Traini R et al (2018). A mechanistic framework for auxin dependent Arabidopsis root hair elongation in response to low external phosphate. Nat Comm 9:1409Google Scholar
  3. Bruex A, Kainkaryam RM, Wieckowski Y, Kang YH, Bernhardt C, Xia Y, Zheng X, Wang JY, Lee MM, Benfey P, Woolf PJ, Schiefelbein J (2012). A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genetic 8:e1002446CrossRefGoogle Scholar
  4. Chandran AKN, Jeong HY, Jung KH, Lee C (2016). Development of functional modules based on co-expression patterns for cell-wall biosynthesis related genes in rice. J Plant Biol 59:1–15CrossRefGoogle Scholar
  5. Dittmer HJ (1937). A quantitative study of the roots and root hairs of a winter rye plant (Secale cereale). Am J Bot 24:417–420CrossRefGoogle Scholar
  6. Dolan L, Costa S. Evolution and genetics of root hair stripes in the root epidermis (2001). J Exp Bot 52:413–417CrossRefGoogle Scholar
  7. Gahoonia TS, Nielsen NE (2003). Phosphorus (P) uptake and growth of a root hairless barley mutant (bald root barley, brb) and wild type in low-and high-P soils. Plant Cell Environ 26:1759–1766CrossRefGoogle Scholar
  8. Gahoonia TS, Nielsen NE, Joshi PA, Jahoor A (2001). A root hairless barley mutant for elucidating genetics of root hairs and phosphorus uptake. Plant and Soil 235:211–219CrossRefGoogle Scholar
  9. Gilroy S, Jones DL (2000). Through form to function:root hair development and nutrient uptake. Trends Plant Sci 5:56–60CrossRefGoogle Scholar
  10. Giri J, Bhosale R, Huang G, Pandey B, Parker H, Zappala S. et al (2018). The rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nat Comm 9:1408CrossRefGoogle Scholar
  11. Grieneisen V, Xu J, Marée A, Hogeweg P, Scheres B (2007). Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013CrossRefGoogle Scholar
  12. Haling RE, Brown LK, Bengough AG, Young IM, Hallett PD, White PJ, George TS (2013). Root hairs improve root penetration, rootsoil contact, and phosphorus acquisition in soils of different strength. J Exp Bot 64:3711–3721CrossRefGoogle Scholar
  13. Hazen SP, Scott-Craig JS, Walton JD (2002). Cellulose synthase-like genes of rice. Plant Physiol 128:336–340CrossRefGoogle Scholar
  14. Huang L, Shi X, Wang W, Ryu KH, Schiefelbein J (2017). Diversification of root hair development genes in vascular plants. Plant Physiol 174:1697–1712CrossRefGoogle Scholar
  15. Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G. T-DNA insertional mutagenesis for functional genomics in rice (2000). Plant J 22:561–570Google Scholar
  16. Jungk A. Root hair and the acquisition of plant nutrients from soil (2001). J Plant Nutr Soil Sci 164:121–129Google Scholar
  17. Kawata S, Ishihara K. Studies on the root hairs in rice plant (1959). Proc Crop Sci Soc Jpn 27:341–348CrossRefGoogle Scholar
  18. Kawata S, Ishihara K, Shioya T (1964). Studies on the root hairs of lowland rice plants in the upland fields. Proc Crop Sci Soc Jpn 32:250–253CrossRefGoogle Scholar
  19. Kim CM, Han CD, Dolan L (2017). RSL class I genes positively regulate root hair development i. Oryza sativa. New Phytol 213:314–323CrossRefGoogle Scholar
  20. Kim CM, Park SH, Je BI, Park SH, Park SJ, Piao HL, Eun MY, Dolan L, Han CD (2007). OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice. Plant Physiol 143:1220–1230CrossRefGoogle Scholar
  21. Kim DW, Lee SH, Choi SB, Won SK, Heo YK, Cho M, Park YI, Cho HT (2006). Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns. Plant Cell 18:2958–2570CrossRefGoogle Scholar
  22. Kumar M, Turner S (2015). Plant cellulose synthesis:CESA proteins crossing kingdoms. Phytochemistry 112:91–99CrossRefGoogle Scholar
  23. Lane DR, Wiedemeier A, Peng L, Höfte H, Vernhettes S, Desprez T, Hocart CH, Birch RJ, Baskin TI, Burn JE, Arioli T, Betzner AS, Williamson RE (2001). Temperature-sensitive alleles of RSW2 link the KORRIGAN endo-1,4-beta-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. Plant Physiol 126:278–288CrossRefGoogle Scholar
  24. Lee C, Zhong R, Richardson EA, Himmelsbach DS, McPhail BT, Ye ZH (2007). The PARVUS gene is expressed in cells undergoing secondary wall thickening and is essential for glucuronoxylan biosynthesis. Plant Cell Physiol 48:1659–1672CrossRefGoogle Scholar
  25. Li M, Xiong G, Li R, Cui J, Tang D, Zhang B, Pauly M, Cheng Z, Zhou Y (2009). Rice cellulose synthase-like D4 is essential for normal cell-wall biosynthesis and plant growth. Plant J 60:1055–69CrossRefGoogle Scholar
  26. Ma JF, Goto S, Tamai K, Ichii M (2001). Role of root hair and lateral roots in silicon uptake by rice. Plant Physiol 127:1773–1780CrossRefGoogle Scholar
  27. Mangano S, Denita-Juarez SP, Choi HS, Marzol E, Hwang Y, Ranocha P, Velasquez SM, Borassi C, Barberini ML, Aptekmann AA, Muschietti JP, Nadra AD, Dunand C, Cho HT, Estevez JM (2017). Molecular link between auxin and ROS-mediated polar growth. Proc Natl Acad Sci USA 114:5289–5294CrossRefGoogle Scholar
  28. Mansoori N, Timmers J, Desprez T, Kamei CL, Dees DC, Vincken JP, Visser RG, Hofte H, Vernhettes S, Trindade LM 2014;. KORRIGAN1 interacts specifically with integral components of the cellulose synthase machinery. Plos One 9:e112387Google Scholar
  29. Marzec M, Melzer M, Szarejko I (2015). Root hair development in the grasses:what we already know and what we still need to know. Plant Physiol 168:407–414CrossRefGoogle Scholar
  30. Mølhøj M, Ulvskov P, Da Degan F (2001). Characterization of a functional soluble form of a Brassica napus membrane-anchored endo-1,4-beta-glucanase heterologously expressed in Pichia pastoris. Plant Physiol 127:674–684CrossRefGoogle Scholar
  31. Moon S, Chandran AKN, An G, Lee C, Jung KH (2018). Genomewide analysis of root hair-preferential genes in rice. Rice (N Y) 11(1):48CrossRefGoogle Scholar
  32. Muller M, Schmidt W (2004). Environmentally induced plasticity of root hair development in Arabidopsis. Plant Physiol 134:409–419.Google Scholar
  33. Römling U, Galperin MY (2015). Bacterial cellulose biosynthesis:diversity of operons, subunits, products, and functions. Trends Microbiol 23:545–457CrossRefGoogle Scholar
  34. Salazar-Henao JE, Vélez-Bermúdez IC, Schmidt W (2016). The regulation and plasticity of root hair patterning and morphogenesis. Development 143:1848–1858CrossRefGoogle Scholar
  35. Slabaugh E, Held M, Brandizzi F (2011). Control of root hair development in Arabidopsis thaliana by an endoplasmic reticulum anchored member of the R2R3-MYB transcription factor family. Plant J 67:395–405CrossRefGoogle Scholar
  36. Speth EB, Imboden L, Hauck P, He SY (2009). Subcellular localization and functional analysis of the Arabidopsis GTPase RabE. Plant Physiol 149:1824–1837CrossRefGoogle Scholar
  37. Takahashi J, Rudsander UJ, Hedenström M, Banasiak A, Harholt J, Amelot N, Immerzeel P, Ryden P, Endo S, Ibatullin FM, Brumer H, de Campillo E, Master ER, Scheller HV, Sundberg B, Teeri TT, Mellerowicz EJ (2009). KORRIGAN1 and its aspen homolog PttCel9A1 decrease cellulose crystallinity in Arabidopsis stems. Plant Cell Physiol 50:1099–1115CrossRefGoogle Scholar
  38. Updegraff DM. Semimicro determination of cellulose in biological materials (1969). Anal Biochem 32:420–424CrossRefGoogle Scholar
  39. Wang C, Li S, Ng S, Zhang B, Zhou Y, Whelan J, Wu P, Shou H (2014). Mutation in xyloglucan 6-xylosytransferase results in abnormal root hair development in Oryza sativa. J Exp Bot 65:4149–4157CrossRefGoogle Scholar
  40. Won SK, Lee YJ, Lee HY, Heo YK, Cho M, Cho HT (2009). Ciselement-and transcriptome-based screening of root hair-specific genes and their functional characterization in Arabidopsis. Plant Physiol 150:1459–1473CrossRefGoogle Scholar
  41. Xie K, Minkenberg B, Yang Y (2015). Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112:3570–3575CrossRefGoogle Scholar
  42. Yin L, Verhertbruggen Y, Oikawa A, Manisseri C, Knierim B, Prak L, Jensen JK, Knox JP, Auer M, Willats WG, Scheller HV (2011). The cooperative activities of CSLD2, CSLD3, and CSLD5 are required for normal Arabidopsis development. Mol Plant 4:1024–1037CrossRefGoogle Scholar
  43. Yu ZM, Kang B, He XW, Lv SL, Bai YH, Ding WN, Chen M, Cho HT, Wu P (2011). Root hair-specific expansins modulate root hair elongation in rice. Plant J 66:725–734CrossRefGoogle Scholar

Copyright information

© Korean Society of Plant Biologists and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sunok Moon
    • 1
  • Anil Kumar Nalini Chandran
    • 1
  • Yu-Jin Kim
    • 1
  • Yunshil Gho
    • 1
  • Woo-Jong Hong
    • 1
  • Gynheung An
    • 1
  • Chanhui Lee
    • 2
    Email author
  • Ki-Hong Jung
    • 1
    Email author
  1. 1.Graduate School of Biotechnology and Crop Biotech InstituteKyung Hee UniversityYonginKorea
  2. 2.Department of Plant and Environmental New ResourcesKyung Hee UniversityYonginKorea

Personalised recommendations