Advertisement

Journal of Plant Biology

, Volume 62, Issue 2, pp 129–136 | Cite as

Structural Analysis of Tha4, a Twin-arginine Translocase Protein Localized in Plant Thylakoid Membranes

  • Bao van Nguyen
  • Dong Wook Lee
  • Sangmin Lee
  • Inhwan HwangEmail author
  • Gang-Won CheongEmail author
Original Article
  • 28 Downloads

Abstract

The chloroplast has a complex structure with multiple internal thylakoid membranes surrounding internal lumenal compartments. Chloroplast proteins are localized to these suborganellar locations via different protein targeting mechanisms. In this study, we investigated the three-dimensional (3D) structure of Tha4, an essential component of the twinarginine translocation (Tat) system of thylakoid membranes that mediates protein targeting to the lumen. Full-length Tha4 fused with green fluorescent protein (GFP) localized to thylakoid membranes with a discrete punctate staining pattern when expressed transiently in protoplasts. The transit peptidedeleted mature form of Tha4 was expressed in Escherichia coli, yielding multiple high molecular weight complexes in vitro. These complexes adopt ring-shaped structures of varying sizes, and long filamentous structures were also evident. Electron microscopy and image processing analyses revealed a roughly triangular ring-shaped structure, with one end of the complex open, and the other closed, based on the electron density map. The height of the cylindrical pore is ~47 Å, comparable to the thickness of a typical lipid bilayer.

Keywords

Chloroplast Electron microscopy Tat transporter Tha4 Thylakoid membrane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn G, Kim H, Kim DH, Hanh H, Yoon Y, Singaram I, Wijesinghe KJ, Johnson KA, Zhuang X, Liang Z, Stahelin RV, Jiang L, Cho W, Kang BH, Hwang I (2017) SH3 domain-containing protein 2 plays a crucial role at the step of membrane tubulation during cell plate formation. Plant Cell 29: 1388–1405Google Scholar
  2. Alcock F, Baker MAB, Greene NP, Palmer T, Wallace MI, Berks BC (2013) Live cell imaging shows reversible assembly of the TatA component of the twin-arginine protein transport system. Proc Natl Acad Sci USA 110:e3650–E3659CrossRefGoogle Scholar
  3. Aldridge C, Ma X, Gerard F, Cline K (2014) Substrate-gated docking of pore subunit Tha4 in the TatC cavity initiates Tat translocase assembly. J Cell Biol 205:51–65CrossRefGoogle Scholar
  4. Aldridge C, Storm A, Cline K, Dabney-Smith C (2012) The chloroplast twin arginine transport (Tat) component, Tha4, undergoes conformational changes leading to Tat protein transport. J Biol Chem 287:34752–34763CrossRefGoogle Scholar
  5. Asakura Y, Kikuchi S, Nakai M (2008) Non-identical contributions of two membrane-bound cpSRP components, cpFtsY and Alb3, to thylakoid biogenesis. Plant J 56:1007–1017CrossRefGoogle Scholar
  6. Bae W, Lee YJ, Kim DH, Lee J, Kim S, Sohn EJ, Hwang I (2008) AKr2A-mediated import of chloroplast outer membrane proteins is essential for chloroplast biogenesis. Nat Cell Biol 10:220–227CrossRefGoogle Scholar
  7. Berks BC (2015) The twin-arginine protein translocation pathway. Annu Rev Biochem 84:843–864CrossRefGoogle Scholar
  8. Bionda T, Tillmann B, Simm S, Beilstein K, Ruprecht M, Schleiff E. (2010) Chloroplast import signals: the length requirement for translocation in vitro and in vivo. J Mol Biol 402:510–523CrossRefGoogle Scholar
  9. Blummel AS, Haag LA, Eimer E, Muller M, Frobel J (2015) Initial assembly steps of a translocase for folded proteins. Nat Commun 6:7234CrossRefGoogle Scholar
  10. Celedon JM, Cline K (2013) Intra-plastid protein trafficking: How plant cells adapted prokaryotic mechanisms to the eukaryotic condition. Bba-Mol Cell Res 1833:341–351Google Scholar
  11. Chen KY, Li HM (2007) Precursor binding to an 880-kDa Toc complex as an early step during active import of protein into chloroplasts. Plant J 49:149–158CrossRefGoogle Scholar
  12. Cline, K (2015) Mechanistic aspects of folded protein transport by the twin arginine translocase (Tat). J Biol Chem 290:16530–16538CrossRefGoogle Scholar
  13. Cline K, Henry R, Yuan J, Mccaffery M, Li C, Li X, Hoffman NE (1995) Multiple precursor-specific pathways for protein-transport into thylakoids. J Cell Biochem 132–132Google Scholar
  14. Cline K, Mori H (2001) Thylakoid Delta pH-dependent precursor proteins bind to a cpTatC-Hcf106 complex before Tha4-dependent transport. J Cell Biol 154:719–729CrossRefGoogle Scholar
  15. Dabney-Smith C, Cline K (2009) Clustering of C-terminal stromal domains of Tha4 homo-oligomers during translocation by the Tat protein transport system. Mol Biol Cell 20:2060–2069CrossRefGoogle Scholar
  16. Dabney-Smith C, Mori H, Cline K (2006) Oligomers of Tha4 organize at the thylakoid Tat translocase during protein transport. J Biol Chem 281:5476–5483CrossRefGoogle Scholar
  17. Frobel J, Rose P, Muller M (2012) Twin-arginine-dependent translocation of folded proteins. Philos Trans R Soc Lond B Biol Sci 367: 1029–1046CrossRefGoogle Scholar
  18. Froehlich JE, Keegstra K (2011) The role of the transmembrane domain in determining the targeting of membrane proteins to either the inner envelope or thylakoid membrane. Plant J 68:844–856CrossRefGoogle Scholar
  19. Gohlke U, Pullan L, McDevitt CA, Porcelli I, de Leeuw E, Palmer T, Saibil HR, Berks BC (2005) The TatA component of the twinarginine protein transport system forms channel complexes of variable diameter. Proc Natl Acad Sci USA 102:10482–10486CrossRefGoogle Scholar
  20. Hegerl R (1996) The EM Program Package: A platform for image processing in biological electron microscopy. J Struct Biol 116: 30–34CrossRefGoogle Scholar
  21. Hu Y, Zhao E, Li H, Xia B, Jin C (2010) Solution NMR structure of the TatA component of the twin-arginine protein transport system from gram-positive bacterium Bacillus subtilis. J Am Chem Soc 132:15942–15944CrossRefGoogle Scholar
  22. Jarvis P, Lopez-Juez E (2013) Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 14:787–802CrossRefGoogle Scholar
  23. Jin JB, Kim YA, Kim SJ, Lee SH, Kim DH, Cheong GW, Hwang I (2001) A new dynamin-like protein, ADL6, is involved in trafficking from the trans-Golgi network to the central vacuole in Arabidopsis. Plant Cell 13:1511–1525CrossRefGoogle Scholar
  24. Kim DH, Lee JE, Xu ZY, Geem, KR, Kwon Y, Park JW, Hwang I (2015) Cytosolic targeting factor AKR2A captures chloroplast outer membrane-localized client proteins at the ribosome during translation. Nat Commun 6:6843CrossRefGoogle Scholar
  25. Kim DH, Park MJ, Gwon GH, Silkov A, Xu ZY, Yang EC, Song S, Song K, Kim Y, Yoon HS, Honig B, Cho W, Cho Y, Hwang I (2014) An ankyrin repeat domain of AKR2 drives chloroplast targeting through coincident binding of two chloroplast lipids. Dev Cell 30:598–609CrossRefGoogle Scholar
  26. Kwon Y, Shen JB, Lee MH, Geem KR, Jiang LW, Hwang I (2018) AtCAP2 is crucial for lytic vacuole biogenesis during germination by positively regulating vacuolar protein trafficking. Proc Natl Acad Sci USA 115:e1675–E1683CrossRefGoogle Scholar
  27. Leake MC, Greene NP, Godun RM, Granjon T, Buchanan G, Chen S., Berry RM, Palmer T, Berks BC (2008) Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging. Proc Natl Acad Sci USA 105:15376–15381CrossRefGoogle Scholar
  28. Lee DW, Hwang I (2011) Transient expression and analysis of chloroplast proteins in Arabidopsis protoplasts. Methods Mol Biol 774:59–71CrossRefGoogle Scholar
  29. Lee DW, Hwang I (2018) Evolution and design principles of the diverse chloroplast transit peptides. Mol Cells 41:161–167Google Scholar
  30. Lee DW, Kim JK, Lee S, Choi S, Kim S, Hwang I (2008) Arabidopsis nuclear-encoded plastid transit peptides contain multiple sequence subgroups with distinctive chloroplast-targeting sequence motifs. Plant Cell 20:1603–1622CrossRefGoogle Scholar
  31. Lee DW, Lee J, Hwang I (2017) Sorting of nuclear-encoded chloroplast membrane proteins. Curr Opin Plant Biol 40:1–7CrossRefGoogle Scholar
  32. Lee DW, Woo S, Geem KR, Hwang I (2015) Sequence motifs in transit peptides act as independent functional units and can be transferred to new sequence contexts. Plant Physiol 169:471–484CrossRefGoogle Scholar
  33. Lee DW, Yoo YJ, Razzak MA, Hwang I (2018) Prolines in transit peptides are crucial for efficient preprotein translocation into chloroplasts. Plant Physiol 176:663–677CrossRefGoogle Scholar
  34. Li HM, Teng YS (2013) Transit peptide design and plastid import regulation. Trends Plant Sci 18:360–366CrossRefGoogle Scholar
  35. Li Y, Martin JR, Aldama GA, Fernandez DE, Cline K (2017) Identification of Putative Substrates of SEC2, a Chloroplast Inner Envelope Translocase. Plant Physiol 173:2121–2137CrossRefGoogle Scholar
  36. Li Y, Singhal R, Taylor IW, McMinn PH, Chua XY, Cline K, Fernandez DE (2015) The Sec2 translocase of the chloroplast inner envelope contains a unique and dedicated SECE2 component. Plant J 84:647–658CrossRefGoogle Scholar
  37. Paila YD, Richardson LGL, Schnell DJ (2015) New insights into the mechanism of chloroplast protein import and its integration with protein quality control, organelle biogenesis and development. J Mol Biol 427:1038–1060CrossRefGoogle Scholar
  38. Palmer T, Berks BC (2012) The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 10:483–496CrossRefGoogle Scholar
  39. Patel R, Vasilev C, Beck D, Monteferrante CG, van Dijl JM, Hunter CN, Smith C, Robinson C (2014) A mutation leading to superassembly of twin-arginine translocase (Tat) protein complexes. Biochim Biophys Acta 1843:1978–1986CrossRefGoogle Scholar
  40. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefGoogle Scholar
  41. Pettersson P, Ye W, Jakob M, Tannert F, Klosgen RB, Maler L (2018). Structure and dynamics of plant TatA in micelles and lipid bilayers studied by solution NMR. FEBS J 285:1886–1906CrossRefGoogle Scholar
  42. Porcelli I, de Leeuw E, Wallis R, van den Brink-van der Laan E, de Kruijff B, Wallace BA, Palmer T, Berks BC (2002) Characterization and membrane assembly of the TatA component of the Escherichia coli twin-arginine protein transport system. Biochemistry 41: 13690–13697CrossRefGoogle Scholar
  43. Ramasamy S, Abrol R, Suloway CJM, Clemons WM (2013) The glove-like structure of the conserved membrane protein TatC provides insight into signal sequence recognition in twinarginine translocation. Structure 21:777–788CrossRefGoogle Scholar
  44. Rodriguez F, Rouse SL, Tait CE, Harmer J, De Riso A, Timmel CR, Sansom MS, Berks BC, Schnell JR (2013) Structural model for the protein-translocating element of the twin-arginine transport system. Proc Natl Acad Sci USA 110:e1092–1101CrossRefGoogle Scholar
  45. Rollauer SE, Tarry MJ, Graham JE, Jaaskelainen M, Jager F, Johnson S, Krehenbrink M, Liu SM, Lukey MJ, Marcoux J, McDowell MA, Rodriguez F, Roversi P, Stansfeld PJ, Robinson CV, Sansom MS, Palmer T, Högbom M, Berks BC, Lea SM (2012) Structure of the TatC core of the twin-arginine protein transport system. Nature 492:210–214CrossRefGoogle Scholar
  46. Rose P, Frobel J, Graumann PL, Muller M (2013) Substrate-dependent assembly of the Tat translocase as observed in live Escherichia coli cells. Plos One 8:e69488CrossRefGoogle Scholar
  47. Schwenkert S, Dittmer S, Soll J (2018) Structural components involved in plastid protein import. Essays Biochem 62:65–75CrossRefGoogle Scholar
  48. Schwenkert S, Soll J, Bolter B (2011). Protein import into chloroplasts-How chaperones feature into the game. Bba-Biomembranes 1808:901–911CrossRefGoogle Scholar
  49. Shi LX, Theg SM (2013) The chloroplast protein import system: from algae to trees. Biochim Biophys Acta 1833:314–331CrossRefGoogle Scholar
  50. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46CrossRefGoogle Scholar
  51. Walther TH, Grage SL, Roth N, Ulrich AS (2010) Membrane alignment of the pore-forming component TatA(d) of the twin-arginine translocase from Bacillus subtilis resolved by solid-state NMR spectroscopy. J Am Chem Soc 132:15945–15956CrossRefGoogle Scholar
  52. Zhang Y, Hu Y, Li H, Jin C (2014a) Structural basis for TatA oligomerization: an NMR study of Escherichia coli TatA dimeric structure. Plos One 9:e103157CrossRefGoogle Scholar
  53. Zhang Y, Wang L, Hu YF, Jin CW (2014b) Solution structure of the TatB component of the twin-arginine translocation system. Bba-Biomembranes 1838:1881–1888CrossRefGoogle Scholar
  54. Zoufaly S, Frobel J, Rose P, Flecken T, Maurer C, Moser M, Muller M (2012) Mapping precursor-binding site on TatC subunit of twin arginine-specific protein translocase by site-specific photo cross-linking. J Biol Chem 287:13430–13441CrossRefGoogle Scholar

Copyright information

© Korean Society of Plant Biologists 2019

Authors and Affiliations

  1. 1.Divisiot of Life ScienceGyeongsang National UniversityJinjuKorea
  2. 2.Division of Integrative Biosciences and BiotechnologyPohang University of Science and TechnologyPohangKorea
  3. 3.BioApplications Inc., Pohang Techno Park ComplexNam-gu PohangKorea
  4. 4.Department of Life SciencesPohang University of Science and TechnologyPohangKorea

Personalised recommendations