Journal of Plant Biology

, Volume 62, Issue 2, pp 109–119 | Cite as

The Iron Deficiency Response Regulators IAA-LEUCINE RESISTANT3 and bHLH104 Possess Different Targets and Have Distinct Effects on Photosynthesis in Arabidopsis

  • Mengshu Li
  • Jie Zhang
  • Honglei Jin
  • Dongru Feng
  • Jinfa Wang
  • Hong-Bin Wang
  • Bing LiuEmail author
Original Article


In higher plants, iron (Fe) is an essential element for photosynthesis and growth. Two basic helix-loop-helix (bHLH) transcription factors, bHLH104 and IAA-LEUCINE RESISTANT3 (ILR3), positively regulate Fe uptake in Arabidopsis. Furthermore, an E3 ubiquitin ligase, BRUTUS (BTS) functions as a negative regulator upstream of bHLH104 and ILR3 in the Fe homeostasis pathway. Interestingly, we characterized a lesion of BRUTUS (BTS), which exhibited pale-green leaves and retarded in growth. Genetic analyses showed that only loss of ILR3 could entirely compromise the chlorosis in bts-2 mutants. To further investigate whether bHLH104 and ILR3 have different roles in functioning downstream of BTS other than Fe absorption, we obtained bHLH104-, and ILR3-overexpressing plants. Interestingly, similar to bts-2, overexpression of ILR3 displayed chlorotic leaves. Moreover, overexpressing ILR3 also caused the abundance of thylakoid proteins reduced, along with photosynthetic genes decreased. However, there was no visible difference between bHLH104-overexpressing plants and WT. Furthermore, we found that bHLH104 and ILR3 may act independently on different downstream targets. bHLH104, but not ILR3, could bind to the promoter of At- NEET, which acts as a Fe-S/Fe cluster donor in chloroplasts. Collectively, our data demonstrate that bHLH104 and ILR3 possess different downstream targets that may have distinct effects on photosynthesis, although they share a common function in Fe deficiency responses.


bHLH104 bHLH transcription factor E3 ligase BRUTUS Fe homeostasis ILR3 Photosynthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12374_2018_360_MOESM1_ESM.doc (396 kb)
Supplementary material, approximately 397 KB.


  1. Aparicio F and Pallas V (2017) The coat protein of Alfalfa mosaic virus interacts and interferes with the transcriptional activity of the bHLH transcription factor ILR3 promoting salicylic aciddependent defence signalling response. Mol Plant Pathol 18: 173–186CrossRefGoogle Scholar
  2. Bailey PC, Martin C, Toledo-Ortiz G, Quail PH, Huq E, Heim MA, Jakoby M, Werber M, Weisshaar B (2003) Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell 15:2497–2502CrossRefGoogle Scholar
  3. Balk J, Schaedler TA (2014) Iron cofactor assembly in plants. Annu Rev Plant Biol 65:125–153CrossRefGoogle Scholar
  4. Briat JF, Dubos C, Gaymard F (2015) Iron nutrition, biomass production, and plant product quality. Trends Plant Sci 20:33–40CrossRefGoogle Scholar
  5. Burgess DG, Xu J, Freeling M (2015) Advances in understanding cis regulation of the plant gene with an emphasis on comparative genomics. Curr Opin Plant Biol 27:141–147CrossRefGoogle Scholar
  6. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560CrossRefGoogle Scholar
  7. Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054CrossRefGoogle Scholar
  8. Chitnis PR (2001) PHOTOSYSTEM I: Function and Physiology. Annu Rev Plant Physiol Plant Mol Biol 52:593–626CrossRefGoogle Scholar
  9. Demmig-Adams B, Stewart JJ, Baker CR, Adams WW (2018) Optimization of photosynthetic productivity in contrasting environments by regulons controlling plant form and function. Int J Mol Sci 19:872CrossRefGoogle Scholar
  10. Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515CrossRefGoogle Scholar
  11. Friedrichsen DM, Nemhauser J, Muramitsu T, Maloof JN, Alonso J, Ecker JR, Furuya M, Chory J (2002) Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics 162:1445–1456Google Scholar
  12. Hantzis LJ, Kroh GE, Jahn CE, Cantrell M, Peers G, Pilon M, Ravet K (2018) A program for iron economy during deficiency targets specific Fe proteins. Plant Physiol 176:596–610CrossRefGoogle Scholar
  13. Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20:735–747CrossRefGoogle Scholar
  14. Hindt MN, Guerinot ML (2012). Getting a sense for signals: regulation of the plant iron deficiency response. Biochim Biophys Acta 1823:1521–1530Google Scholar
  15. Hindt MN, Akmakjian GZ, Pivarski KL, Punshon T, Baxter I, Salt DE, Guerinot ML (2017) BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana. Metallomics 9:876–890CrossRefGoogle Scholar
  16. Ivanov R, Brumbarova T, Bauer P (2012) Fitting into the harsh reality: Regulation of iron-deficiency responses in dicotyledonous plants. Molecular Plant 5:27–42CrossRefGoogle Scholar
  17. Jin H, Li M, Duan S, Fu M, Dong X, Liu B, Feng D, Wang J, Wang HB (2016) Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency. Plant Physiol 172:1720–1731CrossRefGoogle Scholar
  18. Johnson MP (2016) Photosynthesis. Essays Biochem 60:255–273CrossRefGoogle Scholar
  19. Kaufmann K, Pajoro A, Angenent GC (2010) Regulation of transcription in plants: mechanisms controlling developmental switches. Nat Rev Genet 11:830–842CrossRefGoogle Scholar
  20. Kobayashi T, Nagasaka S, Senoura T, Itai RN, Nakanishi H, Nishizawa NK (2013) Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nat Commun 4:2792CrossRefGoogle Scholar
  21. Leivar P, Monte E, Al-Sady B, Carle C, Storer A, Alonso JM, Ecker JR, Quail PH (2008) The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. Plant Cell 20:337–352CrossRefGoogle Scholar
  22. Li BH, Tang M, Nelson A, Caligagan H, Zhou X, Clark-Wiest C, Ngo R, Brady SM, Kliebenstein DJ (2018) Network-guided discovery of extensive epistasis between transcription factors involved in aliphatic glucosinolate biosynthesis. Plant Cell 30: 178–195CrossRefGoogle Scholar
  23. Li BH, Gaudinier A, Tang M, Taylor-Teeples M, Nham NT, Ghaffari, C, Benson DS, Steinmann M, Gray JA, Brady SM, Kliebenstein DJ (2014) Promoter-Based Integration in Plant Defense Regulation. Plant Physiol 166:1803–1820CrossRefGoogle Scholar
  24. Li X, Zhang H, Ai Q, Liang G, Yu D (2016) Two bHLH Transcription Factors, bHLH34 and bHLH104, Regulate Iron Homeostasis in Arabidopsis thaliana. Plant Physiol 170:2478–2493CrossRefGoogle Scholar
  25. Liang G, Zhang H, Li X, Ai Q, Yu D (2017) bHLH transcription factor bHLH115 regulates iron homeostasis in Arabidopsis thaliana. J Exp Bot 68:1743–1755Google Scholar
  26. Lindemose S, O'Shea C, Jensen MK, Skriver K (2013) Structure, function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci 14:5842–5878CrossRefGoogle Scholar
  27. Liu LS, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants -Functional domains, evolution and regulation. European Journal of Biochemistry 262:247–257CrossRefGoogle Scholar
  28. Liu W, Stewart CN, Jr. (2016) Plant synthetic promoters and transcription factors. Curr Opin Biotechnol 37:36–44CrossRefGoogle Scholar
  29. Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN (2010) The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 22: 2219–2236CrossRefGoogle Scholar
  30. Lopez-Millan AF, Grusak MA, Abadia A, Abadia J (2013) Iron deficiency in plants: an insight from proteomic approaches. Front Plant Sci 4:254CrossRefGoogle Scholar
  31. Matthiadis A, Long TA (2016) Further insight into BRUTUS domain composition and functionality. Plant Signaling & Behavior 11: e1204508CrossRefGoogle Scholar
  32. McElver J, Tzafrir I, Aux G, Rogers R, Ashby C, Smith K, Thomas C, Schetter A, Zhou Q, Cushman MA, Tossberg J, Nickle T, Levin JZ, Law M, Meinke D, Patton D (2001) Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics 159:1751–1763Google Scholar
  33. Min JH, Ju HW, Yoon D, Lee KH, Lee S, Kim CS (2017) Arabidopsis Basic Helix-Loop-Helix 34 (bHLH34) Is Involved in Glucose Signaling through Binding to a GAGA Cis-Element. Front Plant Sci 8:2100CrossRefGoogle Scholar
  34. Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95CrossRefGoogle Scholar
  35. Nechushtai R, Conlan AR, Harir Y, Song L, Yogev O, Eisenberg-Domovich Y, Livnah O, Michaeli D, Rosen R, Ma V, Luo Y, Zuris JA, Paddock ML, Cabantchik ZI, Jennings PA, Mittler R (2012) Characterization of Arabidopsis NEET reveals an ancient role for NEET proteins in iron metabolism. Plant Cell 24:2139–2154CrossRefGoogle Scholar
  36. Nenova V (2009) Growth and photosynthesis of pea plants under different iron supply. Acta Physiologiae Plantarum 31:385–391CrossRefGoogle Scholar
  37. Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582CrossRefGoogle Scholar
  38. Rampey RA, Woodward AW, Hobbs BN, Tierney MP, Lahner B, Salt DE, Bartel B (2006) An Arabidopsis basic helix-loop-helix leucine zipper protein modulates metal homeostasis and auxin conjugate responsiveness. Genetics 174:1841–1857CrossRefGoogle Scholar
  39. Samira R, Li B, Kliebenstein D, Li C, Davis E, Gillikin JW, Long TA (2018) The bHLH transcription factor ILR3 modulates multiple stress responses in Arabidopsis. Plant Mol Biol 97:297–309CrossRefGoogle Scholar
  40. Selote D, Samira R, Matthiadis A, Gillikin JW, Long TA (2015) Ironbinding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors. Plant Physiol 167: 273–286Google Scholar
  41. Selote D, Matthiadis A, Gillikin JW, Sato MH, Long TA (2018) The E3 ligase BRUTUS facilitates degradation of VOZ1/2 transcription factors. Plant Cell Environ 41:2463–2474CrossRefGoogle Scholar
  42. Stone, S.L., Hauksdottir, H., Troy, A., Herschleb, J., Kraft, E., and Callis, J. (2005). Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137:13–30Google Scholar
  43. Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220CrossRefGoogle Scholar
  44. Wang C, Yao X, Yu D, Liang G (2017a) Fe-deficiency-induced expression of bHLH104 enhances Fe-deficiency tolerance of Arabidopsis thaliana. Planta 246:421–431CrossRefGoogle Scholar
  45. Wang ML, Jiang L, Da QG, Liu J, Feng DR, Wang JF, Wang HB, Jin HL (2016) DELAYED GREENING 238, a nuclear-encoded chloroplast nucleoid protein, is involved in the regulation of early chloroplast development and plastid gene expression in Arabidopsis thaliana. Plant and Cell Physiology 57:2586–2599CrossRefGoogle Scholar
  46. Wang P, Liu J, Liu B, Feng D, Da Q, Wang P, Shu S, Su J, Zhang Y, Wang J, Wang HB (2013) Evidence for a role of chloroplastic mtype thioredoxins in the biogenesis of photosystem II in Arabidopsis. Plant Physiol 163:1710–1728CrossRefGoogle Scholar
  47. Wang Y, Xu C, Li K, Cai X, Wu M, Chen G (2017b) Fe deficiency induced changes in rice (Oryza sativa L.) thylakoids. Environ Sci Pollut Res Int 24:1380–1388CrossRefGoogle Scholar
  48. Yamori W, Shikanai T (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol 67:81–106CrossRefGoogle Scholar
  49. Yao XN, Cai YR, Yu DQ, Liang G (2018) bHLH104 confers tolerance to cadmium stress in Arabidopsis thaliana. Journal of Integrative Plant Biology 60:691–702CrossRefGoogle Scholar
  50. Yruela I (2013) Transition metals in plant photosynthesis. Metallomics 5: 1090–1109CrossRefGoogle Scholar
  51. Zhang J, Liu B, Li M, Feng D, Jin H, Wang P, Liu J, Xiong F, Wang J, Wang HB (2015) The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis. Plant Cell 27:787–805CrossRefGoogle Scholar

Copyright information

© Korean Society of Plant Biologists 2019

Authors and Affiliations

  • Mengshu Li
    • 1
  • Jie Zhang
    • 1
  • Honglei Jin
    • 1
  • Dongru Feng
    • 1
  • Jinfa Wang
    • 1
  • Hong-Bin Wang
    • 1
  • Bing Liu
    • 1
    Email author
  1. 1.State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat-sen UniversityGuangzhouChina

Personalised recommendations