Advertisement

Journal of Plant Biology

, Volume 62, Issue 1, pp 48–60 | Cite as

Land-plant Phylogenomic and Pomegranate Transcriptomic Analyses Reveal an Evolutionary Scenario of CYP75 Genes Subsequent to Whole Genome Duplications

  • Taikui Zhang
  • Cuiyu Liu
  • Xianbin Huang
  • Hanyao ZhangEmail author
  • Zhaohe YuanEmail author
Original Article
  • 2 Downloads

Abstract

Regulatory and developmental genes are retained following whole-genome duplication (WGD) events, and, thus, are central to elucidating the evolution of the gene family subsequent to WGDs. Among these genes, the CYP75 gene family is a key member of the biggest enzyme superfamily in land-plant lineages. Although the molecular genetics of the biological progress involved with CYP75 genes have been partly elucidated, the evolution after WGDs in landplant lineages are still largely unknown. Here, we identified CYP75 orthologues in pomegranate (Punica granatum) and other twenty-five representative species to explore the gene evolution under WGD shaping on a broad evolutionary scale. Phylogenomic analyses identified genome-wide CYP75 candidates and suggested that a recent duplication of the CYP75 genes in seed plants occurred prior to the split of gymnosperms and angiosperms approximately 400 million years ago. Molecular evolution analyses revealed that CYP75 gene lineages evolved under a different purifying selection pressure, and slight relaxations occurred in the recent duplication groups in gymnosperms and angiosperms. The syntenic analyses showed that WGDs together with segmental duplications contributed to the CYP75 gene evolution in pomegranate. RT-PCR, qRT-PCR and RNA-Seq verification suggested that pomegranate CYP75 genes evolved through exon fusion and had a fruit-specific expression pattern. Neo- or sub-functionalization is the main fate of CYP75 genes following duplication. The expression pattern of homologous copies of CYP75 in pomegranate supports the CYP75 family evolution contributing to species reproduction that showy fruit colours attracted birds and other animals to spread seeds. Integration of the above analyses generated a putative evolutionary scenario of the CYP75 family in land plants. Our data provided a potential reference model to further elucidate the evolution of the regulatory and developmental gene families after WGDs.

Keywords

CYP75 Gene family Expression pattern Land plant lineage-specific evolution Pomegranate genome Whole-genome duplication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12374_2018_319_MOESM1_ESM.pdf (144 kb)
Supplementary material, approximately 144 KB.

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  2. Birney E, Clamp M, Durbin R (2004) Genewise and genomewise. Genome Res 14:988–995CrossRefGoogle Scholar
  3. Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, Adam C, Aki SS, Althoff F, Araki T, Arteaga-Vazquez MA, Balasubrmanian S, Barry K, Bauer D, Boehm CR, Briginshaw L, Caballero-Perez J, Catarino B, Chen F, Chiyoda S, Chovatia M, Davies KM, Delmans M, Demura T, Dierschke T, Dolan L, Dorantes-Acosta AE, Eklund DM, Florent SN, Flores-Sandoval E, Fujiyama A, Fukuzawa H, Galik B, Grimanelli D, Grimwood J, Grossniklaus U, Hamada T, Haseloff J, Hetherington AJ, Higo A, Hirakawa Y, Hundley HN, Ikeda Y, Inoue K, Inoue S-i, Ishida S, Jia Q, Kakita M, Kanazawa T, Kawai Y, Kawashima T, Kennedy M, Kinose K, Kinoshita T, Kohara Y, Koide E, Komatsu K, Kopischke S, Kubo M, Kyozuka J, Lagercrantz U, Lin S-S, Lindquist E, Lipzen AM, Lu C-W, De Luna E, Martienssen RA, Minamino N, Mizutani M, Mizutani M, Mochizuki N, Monte I, Mosher R, Nagasaki H, Nakagami H, Naramoto S, Nishitani K, Ohtani M, Okamoto T, Okumura M, Phillips J, Pollak B, Reinders A, Rövekamp M, Sano R, Sawa S, Schmid MW, Shirakawa M, Solano R, Spunde A, Suetsugu N, Sugano S, Sugiyama A, Sun R, Suzuki Y, Takenaka M, Takezawa D, Tomogane H, Tsuzuki M, Ueda T, Umeda M, Ward JM, Watanabe Y, Yazaki K, Yokoyama R, Yoshitake Y, Yotsui I, Zachgo S, Schmutz J (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:287–304CrossRefGoogle Scholar
  4. Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-Seq quantification. Nat Biotechnol 34:525–527CrossRefGoogle Scholar
  5. Brockington SF, Yang Y, Gandia-Herrero F, Covshoff S, Hibberd JM, Sage RF, Wong GKS, Moore MJ, Smith SA (2015) Lineagespecific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytol 207:1170–1180CrossRefGoogle Scholar
  6. Chen C (2015) Overview of plant pigments, In Chen C ed, Pigments in fruits and vegetables:genomics and dietetics, Springer New York, New York, NY pp 1−7CrossRefGoogle Scholar
  7. Conow C, Fielder D, Ovadia Y, Libeskind-Hadas R (2010) Jane:a new tool for the cophylogeny reconstruction problem. Algorithms Mol Biol 5:16CrossRefGoogle Scholar
  8. Devos N, Szövényi P, Weston DJ, Rothfels CJ, Johnson MG, Shaw AJ (2016) Analyses of transcriptome sequences reveal multiple ancient large-scale duplication events in the ancestor of Sphagnopsida (Bryophyta). New Phytol 211:300–318CrossRefGoogle Scholar
  9. Finn RD, Clements J, Eddy SR (2011) HMMER web server:interactive sequence similarity searching. Nucleic Acids Res 39:W29−W37Google Scholar
  10. Graham SA (2013) Fossil records in the Lythraceae. Bot Rev 79:48–145CrossRefGoogle Scholar
  11. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies:assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefGoogle Scholar
  12. Hartmann A-M, Tesch D, Nothwang HG, Bininda-Emonds ORP (2014) Evolution of the cation chloride cotransporter family:ancient origins, gene losses, and subfunctionalization through duplication. Mol Biol Evol 31:434–447CrossRefGoogle Scholar
  13. Holland D, Hatib K, Bar-Ya'akov I (2009) Pomegranate:botany, horticulture, breeding, In Janick J ed, Hort Rev, Vol 35. John Wiley & Sons, Inc., Hoboken, NJ, USA pp 127−191Google Scholar
  14. Hollister JD (2015) Polyploidy:adaptation to the genomic environment. New Phytol 205:1034–1039CrossRefGoogle Scholar
  15. Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, de Pamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97CrossRefGoogle Scholar
  16. Kaltenegger E, Eich E, Ober D (2013) Evolution of homospermidine synthase in the Convolvulaceae:a story of gene duplication, gene loss, and periods of various selection pressures. The Plant Cell 25:1213–1227CrossRefGoogle Scholar
  17. Katoh K, Standley DM (2016) A simple method to control overalignment in the MAFFT multiple sequence alignment program. Bioinformatics 32:1933–1942CrossRefGoogle Scholar
  18. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664CrossRefGoogle Scholar
  19. Koski LB, Golding GB (2001) The closest BLAST hit is often not the nearest neighbor. J Mol Evol 52:540–542CrossRefGoogle Scholar
  20. Krzywinski MI, Schein JE, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos:an information aesthetic for comparative genomics. Genome Res 19:1639–1645CrossRefGoogle Scholar
  21. Kumar S, Stecher G, Suleski M, Hedges SB (2017) TimeTree:a resource for timelines, timetrees, and divergence times. Mol Biol Evol 34:1812–1819CrossRefGoogle Scholar
  22. Lee H-L, Irish VF (2011) Gene duplication and loss in a MADS box gene transcription factor circuit. Mol Biol Evol 28:3367–3380CrossRefGoogle Scholar
  23. Liu X, Liu X, Zhang Z, Sang M, Sun X, He C, Xin P, Zhang H (2018) Functional analysis of the FZF1 genes of Saccharomyces uvarum. Front Microbiol 9:96CrossRefGoogle Scholar
  24. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550CrossRefGoogle Scholar
  25. Magallón S, Hilu KW, Quandt D (2013) Land plant evolutionary timeline:gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am J Bot 100:556–573CrossRefGoogle Scholar
  26. Murat F, Armero A, Pont C, Klopp C, Salse J (2017) Reconstructing the genome of the most recent common ancestor of flowering plants. Nat Genet 49:490–496CrossRefGoogle Scholar
  27. Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S (2004) Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol 135:756–772Google Scholar
  28. Panchy N, Lehti-Shiu M, Shiu S-H (2016) Evolution of gene duplication in Plants. Plant Physiol 171:2294–2316Google Scholar
  29. Patel RK, Jain M (2012) NGS QC Toolkit:a toolkit for quality control of next generation sequencing data. PLoS One 7:e30619Google Scholar
  30. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016) Transcriptlevel expression analysis of RNA-Seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11:1650–1667CrossRefGoogle Scholar
  31. Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181:219–229CrossRefGoogle Scholar
  32. Renault H, De Marothy M, Jonasson G, Lara P, Nelson DR, Nilsson I, André F, von Heijne G, Werck-Reichhart D (2017) Gene duplication leads to altered membrane topology of a cytochrome P450 enzyme in seed plants. Mol Biol Evol 34:2041–2056CrossRefGoogle Scholar
  33. Seitz C, Ameres S, Schlangen K, Forkmann G, Halbwirth H (2015) Multiple evolution of flavonoid 3',5'-hydroxylase. Planta 242:561–573CrossRefGoogle Scholar
  34. Soltis PS, Soltis DE (2016) Ancient WGD events as drivers of key innovations in angiosperms. Curr Opin Plant Biol 30:159–165CrossRefGoogle Scholar
  35. Suyama M, Torrents D, Bork P (2006) PAL2NAL:robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34:W609–W612CrossRefGoogle Scholar
  36. Tamura K, Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S (2012) Estimating divergence times in large molecular phylogenies. Proc Natl Acad Sci U S A 109:19333–19338CrossRefGoogle Scholar
  37. Tanaka Y (2006) Flower colour and cytochromes P450. Phytochem Rev 5:283–291CrossRefGoogle Scholar
  38. Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 18:411CrossRefGoogle Scholar
  39. Victor C, Marçal S, Charles H, Hua CW, Pedro F, A. MA, P. PJA, Jacqueline GP (2015) Genome-wide analysis of the lignin toolbox of Eucalyptus grandis. New Phytol 206:1297–1313CrossRefGoogle Scholar
  40. Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee T-h, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH (2012) MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49Google Scholar
  41. Wei K, Chen H (2018) Global identification, structural analysis and expression characterization of cytochrome P450 monooxygenase superfamily in rice. BMC Genomics 19:35CrossRefGoogle Scholar
  42. Yang Z (2007) PAML 4:phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591CrossRefGoogle Scholar
  43. Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17:32–43CrossRefGoogle Scholar
  44. Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y (2017) Ggtree:an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 8:28–36CrossRefGoogle Scholar
  45. Yuan Z, Fang Y, Zhang T, Fei Z, Han F, Liu C, Liu M, Xiao W, Zhang W, Wu S, Zhang M, Ju Y, Xu H, Dai H, Liu Y, Chen Y, Wang L, Zhou J, Guan D, Yan M, Xia Y, Huang X, Liu D, Wei H, Zheng H (2018) The pomegranate (Punica granatum L.) genome provides insights into fruit quality and ovule developmental biology. Plant Biotechnol J 16:1363–1374CrossRefGoogle Scholar
  46. Zhang T, Liu C, Zhang H, Yuan Z (2017) An integrated approach to identify Cytochrome P450 superfamilies in plant species within the Malvids, In Zhang D ed, Proceedings of the 5th International Conference on Bioinformatics and Computational Biology, ACM, New York, NY, USA pp 11−16Google Scholar
  47. Zhao X, Yuan Z, Yin Y, Feng L (2015) Patterns of pigment changes in pomegranate (Punica granatum L.) peel during fruit ripening. Acta Hortic 1089:83–89CrossRefGoogle Scholar
  48. Zhu FZ, Yuan ZH, Zhao XQ, Yin YL, Feng LJ (2015) Composition and contents of anthocyanins in different pomegranate cultivars. Acta Hortic 1089:35–41Google Scholar
  49. Zou C, Lehti-Shiu MD, Thibaud-Nissen F, Prakash T, Buell CR, Shiu S-H (2009) Evolutionary and expression signatures of pseudogenes in Arabidopsis and rice. Plant Physiol 151:3–15CrossRefGoogle Scholar

Copyright information

© Korean Society of Plant Biologists and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Co-Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
  2. 2.College of ForestryNanjing Forestry UniversityNanjingChina
  3. 3.Key Laboratory of Biodiversity Conservation in Southwest China, the State Forestry AdministrationSouthwest Forestry UniversityKunmingChina

Personalised recommendations