Journal of Plant Biology

, Volume 60, Issue 1, pp 66–74 | Cite as

Overexpression of A RING finger ubiquitin ligase gene AtATRF1 enhances aluminium tolerance in Arabidopsis thaliana

  • Xiaomei Qin
  • Sheng Huang
  • Yanqing Liu
  • Mingdi Bian
  • Wuliang Shi
  • Zecheng Zuo
  • Zhenming Yang
Original Article

Abstract

Aluminium (Al) toxicity is a primary limitation of crop production in acid soils, which take over 40% of arable soil worldwide. In previous studies, a series of genes have been identified to regulate the plant Al resistance or tolerance. However, none of E3 ubiquitin ligase, the key factor of ubiquitination that plays an important role in plant growth and development, has been characterized for Al response in Arabidopsis. In this study, an E3 ubiquition ligase gene AtATRF1 (Al Tolerance RING Finger 1), a homolog of RAD18 interacting RAD6 to repair the damaged DNA in human and yeast, is isolated from Arabidopsis. It encodes a predicted protein of 296 amino acids with a C3HC4 type RING finger domain. The expression of AtATRF1 is induced by Al, and the transgenic plant overexpressing AtATRF1 enhances the Al tolerance. Similar as RAD18, the AtATRF1 locates in nucleus and regulates the expression of AtATR, which involves in DNA repair and Al response in Arabidopsis. Our results indicate that nuclearlocated AtATRF1 may interact and ubiquitinate the transcriptional regulator of AtATR to mediate the Al tolerance of Arabidopsis.

Keywords

Arabidopsis AtATRF1 Al tolerance E3 ubiquitin ligase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12374_2016_903_MOESM1_ESM.doc (10.2 mb)
Supplementary material, approximately 10.2 MB.

References

  1. Bu Q, Li H, Zhao Q, Jiang H, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Wang D, Li C (2009) The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development. Plant Physiol 150:463–481CrossRefPubMedPubMedCentralGoogle Scholar
  2. Chen CC, Chen YY, Tang IC, Liang HM, Lai CC, Chiou JM, Yeh KC (2011) Arabidopsis SUMO E3 ligase SIZ1 is involved in excess copper tolerance. Plant Physiol 156:2225–2234CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cho SK, Ryu MY, Seo DH, Kang BG, Kim WT (2011) The Arabidopsis RING E3 ubiquitin ligase AtAIRP2 plays combinatory roles with AtAIRP1 in abscisic acid-mediated drought stress responses. Plant Physiol 157:2240–2257CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ciechanover A (1998) The ubiquitin–proteasome pathway: on protein death and cell life. EMBO J 17:7151–7160CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ding ZJ, Yan JY, Xu XY, Li GX, Zheng SJ (2013) WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminuminduced malate secretion in Arabidopsis. Plant J 76:825–835CrossRefPubMedGoogle Scholar
  6. Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103:8281–8286CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dreher K, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Ann Bot 99:787–822CrossRefPubMedPubMedCentralGoogle Scholar
  8. Frantzios G, Galatis B, Apostolakos P (2005) Aluminium causes variable responses in actin filament cytoskeleton of the root tip cells of Triticum turgidum. Protoplasma 225:129–140CrossRefPubMedGoogle Scholar
  9. Gao W, Liu WW, Zhao M, Li WX (2014) NERF encodes a RING E3 ligase important for drought resistance and enhances the expression of its antisense gene NFYA5 in Arabidopsis. Nucleic Acids Res 43:607–617CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gracheva E, Chitale S, Wilhelm T, Rapp A, Byrne J, Stadler J, Medina R, Cardoso MC, Richly H (2016) ZRF1 mediates remodeling of E3 ligases at DNA lesion sites during nucleotide excision repair. J Cell Biol 213:185–200CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141CrossRefPubMedGoogle Scholar
  12. Hoekenga OA, Vision TJ, Shaff JE, Monforte AJ, Lee GP, Howell SH, Kochian LV (2003) Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta × Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiol 132:936–948CrossRefPubMedPubMedCentralGoogle Scholar
  13. Huang CF, Yamaji N, Ma JF (2010) Knockout of a bacterial-type ATP-binding cassette transporter gene, AtSTAR1, results in increased aluminum sensitivity in Arabidopsis. Plant Physiol 153:1669–1677CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hwang SG, Park HM, Han AR, Jang CS (2016) Molecular characterization of Oryza sativa arsenic-induced RING E3 ligase 1 (OsAIR1): Expression patterns, localization, functional interaction, and heterogeneous overexpression. J Plant Physiol 191:140–148CrossRefPubMedGoogle Scholar
  15. Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Ikka T, Hirayama T, Shinozaki K, Kobayashi M (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA 104:9900–9905CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jennissen HP (1995) Ubiquitin and the enigma of intracellular protein degradation. Eur J Biochem 231:1–30CrossRefPubMedGoogle Scholar
  17. Jeong MS, Kim SH (2004) Aluminum stress in the roots of naked barley. J Plant Biol 47:65–74CrossRefGoogle Scholar
  18. Jones DL, Blancaflor EB, Kochian LV, Gilroy S (2006) Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant Cell Environ 29:1309–1318CrossRefPubMedGoogle Scholar
  19. Jones DL, Kochian LV (1997) Aluminum interaction with plasma membrane lipids and enzyme metal binding sites and its potential role in Al cytotoxicity. FEBS Lett 400:51–57CrossRefPubMedGoogle Scholar
  20. Jung YJ, Lee IH, Nou IS, Lee KD, Rashotte AM, Kang KK (2012) BrRZFP1 a Brassica rapa C3HC4-type RING zinc finger protein involved in cold, salt and dehydration stress. Plant Biol 15:274–283CrossRefPubMedGoogle Scholar
  21. Kim JH, Kim WT (2013) The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/ LOG2 participates in positive regulation of high-salt and drought stress responses. Plant Physiol 162:1733–1749CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kobayashi Y, Hoekenga OA, Itoh H, Nakashima M, Saito S, Shaff JE, Maron LG, Pineros MA, Kochian LV, Koyama H (2007) Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiol 145:843–852CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kobayashi Y, Ohyama Y, Kobayashia Y, Itoa H, Iuchi S, Fujitac M, Zhao CR, Tanveera T, Ganesan M, Kobayashi M, Koyama H (2014) STOP2 activates transcription of several genes for Aland low pH-tolerance that are regulated by STOP1 in Arabidopsis. Mol Plant 7:311–322CrossRefPubMedGoogle Scholar
  24. Kochian LV, Hoekenga OA Piñeros MA (2004) How do crop plants tolerate acid soils? mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493CrossRefPubMedGoogle Scholar
  25. Kumari M, Taylor GJ, Deyholos MK (2008) Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana. Mol Genet Genomics 279:339–357CrossRefPubMedGoogle Scholar
  26. Kunz BA, Anderson HJ, Osmond MJ, Vonarx EJ (2005) Components of nucleotide excision repair and DNA damage tolerance in Arabidopsis thaliana. Environ Mol Mutagen 45:115–127CrossRefPubMedGoogle Scholar
  27. Larsen PB, Cancel J, Rounds M, Ochoa V (2006) Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta 225:1447–1458CrossRefPubMedGoogle Scholar
  28. Larsen PB, Geisler MJB, Jones CA, Williams KM, Cancel JD (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41:353–363CrossRefPubMedGoogle Scholar
  29. Lee DH, Choi HW, Hwang BK (2011) The Pepper E3 ubiquitin ligase RING1 gene, CaRING1, is required for cell death and the salicylic acid-dependent defense response. Plant Physiol 156: 2011–2025CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lee JH, Kim WT (2011) Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis. Mol Cells 31:201–208CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li H, Jiang H, Bu Q, Zhao Q, Sun J, Xie Q, Li C (2011) The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating abscisic acid signaling and drought response. Plant Physiol 156:550–563CrossRefPubMedPubMedCentralGoogle Scholar
  32. Liu J, Magalhaes JV, Shaff J, Kochian, LV (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399CrossRefPubMedGoogle Scholar
  33. Liu J, Zhang C, Wei C, Liu X, Wang M, Yu F, Xie Q, Tu J (2016) The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiol 170:429–443CrossRefPubMedGoogle Scholar
  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt Method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  35. Ma JF (2007) Syndrome of aluminum toxicity and diversity of aluminum resistance in higer plants. Int Rev Cytol 264:226–252Google Scholar
  36. Mohanty S, Das AB, Das P, Mohanty, P (2004) Effect of a low dose of aluminum on mitotic and meiotic activity, 4C DNA content, and pollen sterility in rice, Oryza sativa L. cv. Lalat. Ecotoxicol Environ Saf 59:70–75CrossRefPubMedGoogle Scholar
  37. Nezames CD, Sjogren CA, Barajas JF, Larsen PB (2012) The Arabidopsis cell cycle checkpoint regulators TANMEI/ALT2 and ATR mediate the active process of aluminum-dependent root growth inhibition. Plant Cell 24:608–621CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pickart CM (2001) Mechanisms underlying ubituitination. Annu Rev Biochem 70:503–533CrossRefPubMedGoogle Scholar
  39. Qi S, Lin Q, Zhu H, Gao F, Zhang W, Hua X (2016) The RING finger E3 ligase SpRing is a positive regulator of salt stress signaling in salt-tolerant wild tomato species. Plant Cell Physiol 53:528–539CrossRefGoogle Scholar
  40. Ramadan A, Nemoto K, Seki M, Shinozaki K, Takeda H, Takahashi H, Sawasaki T (2015) Wheat germ-based protein libraries for the functional characterisation of the Arabidopsis E2 ubiquitin conjugating enzymes and the RING-type E3 ubiquitin ligase enzymes. BMC Plant Biol 15:1–15CrossRefGoogle Scholar
  41. Rounds MA, Larsen PB (2008) Aluminum-dependent root-growth inhibition in Arabidopsis results from AtATR-regulated cellcycle arrest. Curr Biol 18:1495–1500CrossRefPubMedGoogle Scholar
  42. Shirsekar G, Dai LY, Hu, YJ, Wang, XJ, Zeng, LR, Wang, GL (2010) Role of ubiquitination in plant innate immunity and pathogen virulence. J Plant Biol 53:10–18CrossRefGoogle Scholar
  43. Silva IR, Smyth TJ, Moxley DF, Carter TE, Allen NS, Rufty TW (2000) Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol 123:543–552CrossRefPubMedPubMedCentralGoogle Scholar
  44. Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590CrossRefPubMedGoogle Scholar
  45. Suh JY, Kim WT (2015) Arabidopsis RING E3 ubiquitin ligase AtATL80 is negatively involved in phosphate mobilization and cold stress response in sufficient phosphate growth conditions. Biochem Biophys Res Commun 463:793–799CrossRefPubMedGoogle Scholar
  46. Tian M, Lou L, Liu L, Yu F, Zhao Q, Zhang H, Wu Y, Tang S, Xia R, Zhu B, Serino G, Xie Q (2015) The RING finger E3 ligase STRF1 is involved in membrane trafficking and modulates saltstress response in Arabidopsis thaliana. Plant J 82:81–92CrossRefPubMedGoogle Scholar
  47. Yang ZM, Sivaguru M, Horst WJ, Matsumoto H (2000) Aluminium tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max). Physiol Plant 110:72–77CrossRefGoogle Scholar
  48. Yu H, Jiang WZ, Liu Q, Zhang H, Piao MX, Chen ZD, Bian MD (2015) Expression pattern and subcellular localization of the ovate protein family in rice. Plos One 10:69–75Google Scholar
  49. Zakir Hossain AKM, Koyama H, Hara T (2006) Growth and cell wall properties of two wheat cultivars differing in their sensitivity to aluminum stress. J Plant Physiol 163:39–47CrossRefPubMedGoogle Scholar
  50. Zeng LR, Vega-Sánchez ME, Zhu T, Wang GL (2006) Ubiquitinationmediated protein degradation and modification: an emerging theme in plant-microbe interactions. Cell Res 16:413–426CrossRefPubMedGoogle Scholar
  51. Zhang H, Shi WL, You JF, Bian MD, Qin XM. Yu H, Liu Q, Peter R, Yang ZM (2015) Transgenic Arabidopsis thaliana plants expressing a β-1,3-glucanase from sweet sorghum (Sorghum bicolor L.) show reduced callose deposition and increased tolerance to aluminium toxicity. Plant Cell Environ 38:1178–1188CrossRefPubMedGoogle Scholar
  52. Zhang X, Wang N, Chen P, Gao M, Liu J, Wang Y, Zhao T, Li Y, Gai J (2014) overexpression of a soybean ariadne like ubiquitin ligase gene GmARI1 enhances aluminum tolerance in arabidopsis. Plos One 9:e111120CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhang Y, Yang C, Li Y, Zheng N, Chen H, Zhao Q, Gao T, Guo H, Xie Q (2007) SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19:1912–1929CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Korean Society of Plant Biologists and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xiaomei Qin
    • 1
  • Sheng Huang
    • 1
  • Yanqing Liu
    • 1
  • Mingdi Bian
    • 1
  • Wuliang Shi
    • 1
  • Zecheng Zuo
    • 1
  • Zhenming Yang
    • 1
  1. 1.Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant ScienceJilin UniversityChangchunChina

Personalised recommendations