Journal of Plant Biology

, Volume 59, Issue 2, pp 162–171 | Cite as

Analysis the role of arabidopsis CKRC6/ASA1 in auxin and cytokinin biosynthesis

  • Dong-Wei Di
  • Lei Wu
  • Pan Luo
  • Li Zhang
  • Tian-Zi Zhang
  • Xue Sun
  • Shao-Dong Wei
  • Chen-Wei An
  • Guang-Qin Guo
Original Article


The crosstalk between auxin and cytokinin (CK) is important for plant growth and development, although the underlying molecular mechanisms remain unclear. Here, we describe the isolation and characterization of a mutant of Arabidopsis Cytokinin-induced Root Curling 6 (CKRC6), an allele of ANTHRANILATE SYNTHASE ALPHA SUBUNIT 1 (ASA1) that encodes the á-subunit of AS in tryptophan (Trp) biosynthesis. The ckrc6 mutant exhibits root gravitropic defects and insensitivity to both CK and the ethylene precursor 1-aminocyclopropane-1-carboxylicacid (ACC) in primary root growth. These defects can be rescued by exogenous indole-3-acetic acid (IAA) or tryptophan (Trp) supplementation. Furthermore, our results suggest that the ckrc6 mutant has decreased IAA content, differential expression patterns of auxin biosynthesis genes and CK biosynthesis isopentenyl transferase (IPT) genes in comparison to wild type. Collectively, our study shows that auxin controls CK biosynthesis based on that CK sensitivity is altered in most auxin-resistant mutants and that CKs promote auxin biosynthesis but inhibit auxin transport and response. Our results also suggest that CKRC6/ASA1 may be located at an intersection of auxin, CK and ethylene metabolism and/or signaling.


Auxin Biosynthesis Cytokinin Ethylene IPTs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12374_2016_396_MOESM1_ESM.docx (12.9 mb)
Supplementary material, approximately 1.04 MB.


  1. Barczak AJ, Zhao J, Pruitt KD, Last RL (1995) 5-Fluoroindole resistance identifies tryptophan synthase beta subunit mutants in Arabidopsis thaliana. Genetics 140:303–313PubMedPubMedCentralGoogle Scholar
  2. Cary AJ, Liu WN, Howell SH (1995) Cytokinin Action Is Coupled To Ethylene In Its Effects on the Inhibition Of Root And Hypocotyl Elongation In Arabidopsis thaliana Seedlings. Plant Physiol 107:1075–1082CrossRefPubMedPubMedCentralGoogle Scholar
  3. Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171CrossRefPubMedGoogle Scholar
  4. Chandler JW (2009) Auxin as compere in plant hormone crosstalk. Planta 231:1–12CrossRefPubMedGoogle Scholar
  5. Chaudhury AM, Letham S, Craig S, Dennis ES (1993) Amp1–a Mutant with High Cytokinin Levels And Altered Embryonic Pattern, Faster Vegetative Growth, Constitutive Photomorphogenesis And Precocious Flowering. Plant J 4:907–916CrossRefGoogle Scholar
  6. Cheng ZJ, Wang L, Sun W, Zhang Y, Zhou C, Su YH, Li W, Sun TT, Zhao XY, Li XG, Cheng YF, Zhao YD, Xie Q, Zhang XS (2013) Pattern of Auxin and Cytokinin Responses for Shoot Meristem Induction Results from the Regulation of Cytokinin Biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiol 161:240–251CrossRefPubMedPubMedCentralGoogle Scholar
  7. De Smet I, Vanneste S, Inze D, Beeckman T (2006) Lateral root initiation or the birth of a new meristem. Plant Mol Biol 60:871–887CrossRefPubMedGoogle Scholar
  8. Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A Genetic Framework for the Control of Cell Division and Differentiation in the Root Meristem. Science 322:1380–1384CrossRefGoogle Scholar
  9. Di DW, Zhang C, Guo GQ (2015a) Involvement of secondary messengers and small organic molecules in auxin perception and signaling. Plant Cell Rep 34:895–904CrossRefPubMedGoogle Scholar
  10. Di DW, Zhang C, Luo P, An CW, Guo GQ (2015b) The biosynthesis of auxin: how many paths truly lead to IAA? Plant Growth Regul 10.1007/s10725-015-0103-5Google Scholar
  11. Gao SP, Fang J, Xu F, Wang W, Sun XH, Chu JF, Cai BD, Feng YQ, Chu CC (2014) CYTOKININ OXIDASE/DEHYDROGENASE4 Integrates Cytokinin and Auxin Signaling to Control Rice Crown Root Formation. Plant Physiology 165:1035–1046CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes & Development 13:1678–1691CrossRefGoogle Scholar
  13. Guo X, Lu W, Ma Y, Qin Q, Hou S (2013) The BIG gene is required for auxin-mediated organ growth in Arabidopsis. Planta 237:1135–1147CrossRefPubMedGoogle Scholar
  14. He W, Brumos J, Li H, Ji Y, Ke M, Gong X, Zeng Q, Li W, Zhang X, An F, Wen X, Li P, Chu J, Sun X, Yan C, Yan N, Xie DY, Raikhel N, Yang Z, Stepanova AN, Alonso JM, Guo H (2011) A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23:3944–3960.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Helliwell CA, Chin-Atkins AN, Wilson IW, Chapple R, Dennis ES, Chaudhury A (2001) The Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. Plant Cell 13:2115–2125CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jones B, Gunneras SA, Petersson SV, Tarkowski P, Graham N, May S, Dolezal K, Sandberg G, Ljung K (2010) Cytokinin Regulation of Auxin Synthesis in Arabidopsis Involves a Homeostatic Feedback Loop Regulated via Auxin and Cytokinin Signal Transduction. Plant Cell 22:2956–2969CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kakimoto T (2001) Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant & Cell Physiology 42:677–685CrossRefGoogle Scholar
  18. Kakimoto T (2003) Biosynthesis of cytokinins. Journal of Plant Research 116:233–239CrossRefPubMedGoogle Scholar
  19. Kuderova A, Urbankova I, Valkova M, Malbeck J, Brzobohaty B, Nemethova D, Hejatko J (2008) Effects of conditional IPTDependent cytokinin overproduction on root architecture of Arabidopsis seedlings. Plant And Cell Physiology 49:570–582CrossRefPubMedGoogle Scholar
  20. Laxmi A, Paul LK, Raychaudhuri A, Peters JL, Khurana JP (2006) Arabidopsis cytokinin-resistant mutant, cnr1, displays altered auxin responses and sugar sensitivity. Plant Molecular Biology 62:409–425CrossRefPubMedGoogle Scholar
  21. Lee K, Seo PJ (2014) The Arabidopsis E3 ubiquitin ligase HOS1 contributes to auxin biosynthesis in the control of hypocotyl elongation. Plant Growth Regulation 76:157–165CrossRefGoogle Scholar
  22. Li J, Last RL (1996) The Arabidopsis thaliana trp5 mutant has a feedback-resistant anthranilate synthase and elevated soluble tryptophan. Plant Physiol 110:51–59CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM, Ecker JR, Schaller GE (2005) Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17:3007–3018CrossRefPubMedPubMedCentralGoogle Scholar
  24. Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138CrossRefPubMedGoogle Scholar
  25. Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 103:16598–16603CrossRefPubMedPubMedCentralGoogle Scholar
  26. Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin-auxin crosstalk. Trends Plant Sci 14:557–562CrossRefPubMedGoogle Scholar
  27. Muller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097CrossRefPubMedPubMedCentralGoogle Scholar
  28. Niyogi KK, Last RL, Fink GR, Keith B (1993) Suppressors of trp1 fluorescence identify a new arabidopsis gene, TRP4, encoding the anthranilate synthase beta subunit. Plant Cell 5:1011–1027PubMedPubMedCentralGoogle Scholar
  29. Nordstrom A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development. Proc Natl Acad Sci USA 101:8039–8044CrossRefPubMedPubMedCentralGoogle Scholar
  30. Normanly J (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harbor Perspectives in Biology 2:a001594CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ongaro V, Leyser O (2008) Hormonal control of shoot branching. J Exp Bot 59:67–74CrossRefPubMedGoogle Scholar
  32. Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annu Rev Plant Biol 58:93–113CrossRefPubMedGoogle Scholar
  33. Ouyang J, Shao X, Li J (2000) Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant J 24:327–333CrossRefPubMedGoogle Scholar
  34. Radwanski ER, Last RL (1995) Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell 7:921–934CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rashotte AM, Chae HS, Maxwell BB, Kieber JJ (2005) The interaction of cytokinin with other signals. Physiologia Plantarum 123:184–194CrossRefGoogle Scholar
  36. Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes & Development 12:198–207CrossRefGoogle Scholar
  37. Ruzicka K, Simaskova M, Duclercq J, Petrasek J, Zazimalova E, Simon S, Friml J, Van Montagu MCE, Benkova E (2009) Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc Natl Acad Sci USA 106:4284–4289CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11:440–448CrossRefPubMedGoogle Scholar
  39. Shimizu-Sato S, Tanaka M, Mori H (2009) Auxin-cytokinin interactions in the control of shoot branching. Plant Mol Biol 69:429–435CrossRefPubMedGoogle Scholar
  40. Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–130PubMedGoogle Scholar
  41. Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A Link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230–2242CrossRefPubMedPubMedCentralGoogle Scholar
  42. Suzuki M, Yamazaki C, Mitsui M, Kakei Y, Mitani Y, Nakamura A, Ishii T, Soeno K, Shimada Y (2015) Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis. Plant Cell Rep 34:1343–1352CrossRefPubMedGoogle Scholar
  43. Takei K, Sakakibara H, Sugiyama T (2001) Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J Biol Chem 276:26405–26410CrossRefPubMedGoogle Scholar
  44. Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballare CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176CrossRefPubMedPubMedCentralGoogle Scholar
  45. Tian Q, Uhlir NJ, Reed JW (2002) Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. Plant Cell 14:301–319CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wang B, Chu J, Yu T, Xu Q, Sun X, Yuan J, Xiong G, Wang G, Wang Y, Li J (2015) Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc Natl Acad Sci USA 112:4821–4826CrossRefPubMedPubMedCentralGoogle Scholar
  48. Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia YJ, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013CrossRefPubMedPubMedCentralGoogle Scholar
  49. Werner T, Schmulling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538CrossRefPubMedGoogle Scholar
  50. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wu L, Luo P, Di DW, Wang L, Wang M, Lu CK, Wei SD, Zhang L, Zhang TZ, Amakorova P, Strnad M, Novak O, Guo GQ (2015) Forward genetic screen for auxin-deficient mutants by cytokinin. Sci Rep 5:11923CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yamada M, Greenham K, Prigge MJ, Jensen PJ, Estelle M (2009) The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol 151:168–179CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhang CG, Guo HP, Zhang J, Guo GQ, Schumaker KS, Guo Y (2010) Arabidopsis Cockayne Syndrome A-Like Proteins 1A and 1B Form a Complex with CULLIN4 and Damage DNA Binding Protein 1A and Regulate the Response to UV Irradiation. Plant Cell 22:2353–2369CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhang R, Wang B, Ouyang J, Li J, Wang Y (2008) Arabidopsis indole synthase, a homolog of tryptophan synthase alpha, is an enzyme involved in the Trp-independent indole-containing metabolite biosynthesis. J Integr Plant Biol 50:1070–1077CrossRefPubMedGoogle Scholar
  55. Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309CrossRefPubMedGoogle Scholar
  56. Zhou ZY, Zhang CG, Wu L, Chai J, Wang M, Jha A, Jia PF, Cui SJ, Yang M, Chen R, Guo GQ (2011) Functional characterization of the CKRC1/TAA1 gene and dissection of hormonal actions in the Arabidopsis root. Plant J 66:516–527CrossRefPubMedGoogle Scholar

Copyright information

© Korean Society of Plant Biologists and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Dong-Wei Di
    • 1
    • 2
  • Lei Wu
    • 1
  • Pan Luo
    • 1
  • Li Zhang
    • 1
  • Tian-Zi Zhang
    • 1
  • Xue Sun
    • 1
  • Shao-Dong Wei
    • 1
  • Chen-Wei An
    • 1
  • Guang-Qin Guo
    • 1
  1. 1.MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life SciencesLanzhou UniversityLanzhouChina
  2. 2.Institute of Soil ScienceChinese Academy of SciencesNanjingChina

Personalised recommendations