Advertisement

Journal of Plant Biology

, Volume 59, Issue 4, pp 386–396 | Cite as

Biogeography of North Pacific Isoëtes (Isoëtaceae) inferred from nuclear and chloroplast DNA sequence data

  • Changkyun KimEmail author
  • Hong-Keun ChoiEmail author
Original Article

Abstract

Recent advances in phylogenetics indicate that reticulate evolution has played an important role in the emergence of Isoëtes species in the North Pacific region. However, the biogeographical origin of the North Pacific Isoëtes species remains contentious. We present a fossilcalibrated phylogeny of species from the North Pacific region based on molecular data. Within this framework, we discuss their ancestral areas and biogeographical history. North Pacific Isoëtes are divided into two clades: clade I, consisting of East Asian, Papua New Guinean, and Australian species, and clade II, consisting of West Beringian and western North American species. Within clade I, Australian Isoëtes species were an early divergent group, and Papua New Guinea’s species form a sister clade to the East Asian species. Biogeographical reconstructions suggest an Australasian origin for the East Asian species that arose through long-distance dispersal during the late Oligocene. Within clade II, I. asiatica from West Beringia forms a clade with I. echinospora and I. muricata from Alaska. Western North America was the area of origin for the dispersal of Isoëtes species to West Beringia via the Bering land bridge during the late Miocene. Our study identifies the biogeographic origin of the North Pacific Isoëtes and suggests long-distance dispersal as the most likely explanation for their intercontinental distribution.

Keywords

Biogeography Chloroplast DNA Isoëtes molecular phylogeny North Pacific nrITS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12374_2016_123_MOESM1_ESM.doc (233 kb)
Supplementary material, approximately 234 KB.

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE T Automat Contr 19:716–723CrossRefGoogle Scholar
  2. Carlsen T, Elven R, Brochmann C (2010) The evolutionary history of Beringian Smelowskia (Brassicaceae) inferred from combined microsatellite and DNA sequence data. Taxon 59:427–438Google Scholar
  3. Chen D-H, Ronald PC (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep 17:53–57CrossRefGoogle Scholar
  4. Chen L-Y, Chen J-M, Gituru BW, Wang Q-F (2012) Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae. BMC Evol Biol 12:30CrossRefPubMedPubMedCentralGoogle Scholar
  5. Choi H-K, Jung J, Kim C (2008) Two new species of Isoëtes (Isoëtaceae) from Jeju Island, South Korea. J Plant Biol 51:354–358CrossRefGoogle Scholar
  6. COSEWIC (2006) COSEWIC assessment and update status report on the Bolander’s quillwort Isoëtes bolanderi in Canada. Committee on the Status of Endangered Wildlife in Canada, OttawaGoogle Scholar
  7. Cox CB, Moore PD (2010) Biogeography: an ecological and evolutionary approach. Ed 8, John Wiley and Sons, New JerseyGoogle Scholar
  8. DeChine EG (2008) A bridge or a barrier? Beringia’s influence on the distribution and diversity of tundra plants. Plant Ecol Divers 1:197–207CrossRefGoogle Scholar
  9. Devos N, Vanderpoorten A (2009) Range disjunctions, speciation, and morphological transformation rates in the liverwort genus Leptocyphus. Evolution 63:779–792CrossRefPubMedGoogle Scholar
  10. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling tree. BMC Evol Biol 7:214CrossRefPubMedPubMedCentralGoogle Scholar
  11. Farris JS, Kallersjo M, Kluge AG, Bult C (1995) Testing significance in incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  12. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  13. Gladenkov AY, Oleinik AE, Marincovich L, Barinov KB (2002) A refined age for the earliest opening of Bering Strait. Palaeogeogr Palaeoclimatol Palaeoecol 183:321–328CrossRefGoogle Scholar
  14. Havill NP, Campbell CS, Vining TF, LePage B, Bayer RJ, Donoghue MJ (2008) Phylogeny and biogeography of Tsuga (Pinaceae) inferred from nuclear ribosomal ITS and chloroplast DNA sequence data. Syst Bot 33:478–489CrossRefGoogle Scholar
  15. Hoot SB, Napier NS, Taylor WC (2004) Revealing unknown or extinct lineages within Isoëtes (Isoëtaceae) using DNA sequences from hybrids. Am J Bot 91:899–904CrossRefPubMedGoogle Scholar
  16. Hoot SB, Napier NS, Taylor WC (2006) Phylogeny and biogeography of Isoëtes (Isoëtaceae) based on nuclear and chloroplast DNA sequence data. Syst Bot 31:449–460CrossRefGoogle Scholar
  17. Jung J, Kim C, Kim H, Choi H-K (2009) Taxonomic examination of Isoëtes L. (Isoëtaceae) in South Korea. Korean J Plant Taxon 39: 63–73 (in Korean with English abstract)Google Scholar
  18. Jung J, Ryu Y, Won H, Choi H-K (2013) Morphological and molecular characterization of a new record of Isoëtes coromandelina subsp. coromandelina from Cambodia. Plant Syst Evol 300:43–50CrossRefGoogle Scholar
  19. Kiefer C, Dobes C, Sharbel TF, Koch MA (2009) Phylogeographic structure of the chloroplast DNA gene pool in North American Boechera-A genus and continental-wide perspective. Mol Phylogenet Evol 52:303–311CrossRefPubMedGoogle Scholar
  20. Kim C, Bounphanmy S, Sun B-Y, Choi H-K (2010) Isoëtes laosiensis, a new species from Lao PDR. Am Fern J 100:45–53CrossRefGoogle Scholar
  21. Kim C, Na HR, Choi H-K (2009). Systematic evaluation of Isoëtes asiatica Makino (Isoëtaceae) based on AFLP, nrITS, and chloroplast DNA sequences. J Plant Biol 52:501–510CrossRefGoogle Scholar
  22. Kim C, Shin H, Chang Y-T, Choi H-K (2010). Speciation pathway of Isoëtes (Isoëtaceae) in East Asia inferred from molecular phylogenetic relationships. Am J Bot 97:958–969CrossRefPubMedGoogle Scholar
  23. Kim C, Shin H, Choi H-K (2009) Genetic diversity and population structure of diploid and polyploidy species of Isoëtes in East Asia based on AFLP markers. Int J Plant Sci 170:496–504CrossRefGoogle Scholar
  24. Kotoh K, Toh H (2008) Recent development in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298CrossRefGoogle Scholar
  25. Les DH, Crawford DJ, Kimball RT, Moody ML, Landolt E (2003) Biogeography of discontinuously distributed hydrophytes: A molecular appraisal of intercontinental disjunctions. Int J Plant Sci 164:917–932CrossRefGoogle Scholar
  26. Liu H, Wang Q-F, Taylor WC (2005) Isoëtes orientalis (Isoëtaceae), a new hexaploid quillwort from China. Novon 15:164–167Google Scholar
  27. Liu X, Gituru WR, Wang Q-F (2004) Distribution of basic diploid and polyploidy species of Isoëtes in East Asia. J Geogr 31: 1239–1250Google Scholar
  28. Marsden CR (1976) A new subspecies of Isoëtes coromandelina from Northern Australia. Contributions from Herbarium Australiense 24:1–10Google Scholar
  29. Marsden CR (1979) Morphology and Taxonomy of Isoëtes in Australasia, India, North-East and South-East Asia, China, and Japan. Ph.D. thesis, University of Adelaide, AdelaideGoogle Scholar
  30. Nelson G, Platnick NI (1981) Systematics and biogeography: cladistics and vicariance. Columbia University Press, New YorkGoogle Scholar
  31. Nie Z-L, Wen J, Azuma H, Qiu Y-L, Sun H, Meng Y, Sun W-B, Zimmer EA (2008) Phylogenetic and biogeographic complexity of Magnoliaceae in the Northern Hemisphere inferred from three nuclear datasets. Mol Phylogenet Evol 48:1027–1040CrossRefPubMedGoogle Scholar
  32. Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (Are We There Yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24:581–583CrossRefPubMedGoogle Scholar
  33. Oliver C, Hollingsworth PM, Gornall RJ (2006) Chloroplast DNA phylogeography of the arctic-montane species Saxifraga hirculus (Saxifragaceae). Heredity 96:222–231CrossRefPubMedGoogle Scholar
  34. Perrie L, Brownsey P (2007) Molecular evidence for long-distance dispersal in the New Zealand pteridophyte flora. J Geogr 34: 2028–2038Google Scholar
  35. Pigg KB (2001) Isoetalean lycopsid evolution: from the Devonian to the present. Am Fern J 91:99–114CrossRefGoogle Scholar
  36. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  37. Qiu Y-X, Sun Y, Zhang X-P, Lee J, Fu C-X, Comes HP (2009) Molecular phylogeography of East Asian Kirengeshoma (Hydrangeaceae) in relation to Quaternary climate change and landbridge configurations. New Phytol 183:480–495CrossRefPubMedGoogle Scholar
  38. Rambaut A, Drummond AJ (2003) Tracer, ver. 1.5. 2003. Available from http://tree.bio.ed.ac.uk/software/Tracer/Google Scholar
  39. Retallack GJ (1997) Earliest Triassic origin of Isoëtes and quillwort evolutionary radiation. J Paleontol 71:500–521Google Scholar
  40. Ronquist F, Huelsenbeck JP (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  41. Sclater JG, Fisher RL (1974) The evolution of the east central Indian Ocean, with emphasis of the tectonic setting of the Ninetyeast Ridge. Geol Soc Am Bull 85:683–702CrossRefGoogle Scholar
  42. Sheahan MC, Chase MW (2000) Phylogenetic relationships within Zygophyllaceae based on DNA sequences of three plastid regions, with special emphasis on Zygophylloideae. Syst Bot 25: 371–384CrossRefGoogle Scholar
  43. Skog JE, Dilcher DL, Potter FW (1992) A new species of Isoëtites from the mid-Cretaceous Dakota group of Kansas and Nebraska. Am Fern J 82:151–161CrossRefGoogle Scholar
  44. Swofford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), ver. 4.0b10. Sinauer Associates, SunderlandGoogle Scholar
  45. Takamiya M (1999) Natural history and taxonomy of Isoëtes (Isoëtaceae). Acta Phytotaxonomica Geobotanica 50:101–138 (in Japanese)Google Scholar
  46. Takamiya M, Watanabe M, Ono K (1997) Biosystematic studies on the genus Isoëtes (Isoëtaceae) in Japan. IV. Morphology and anatomy of sporophytes, phytogeography and taxonomy. Acta Phytotaxonomica Geobotanica 48:89–122Google Scholar
  47. Taylor WC, Hickey RJ (1992) Habitat, evolution and speciation in Isoëtes. Ann Mo Bot Gard 79:613–622CrossRefGoogle Scholar
  48. Taylor WC, Lekschas AR, Wang QF, Liu X, Napier NS, Hoot SB (2004) Phylogenetic relationships of Isoëtes (Isoëtaceae) in China as revealed by nucleotide sequences of the nuclear ribosomal ITS region and the second intron of a LEAFY homolog. Am Fern J 94:196–205CrossRefGoogle Scholar
  49. Taylor WC, Luebke NT, Britton DM, Hickey RJ, Brunton DF (1993) Isoëtaceae Reichenbach. In: FNA Editorial Committee (eds) Flora of North America: pteridophytes and gymnosperms, vol. 2. Oxford University Press, New York, pp 64–75Google Scholar
  50. Taylor WC, Wagner WH, Hobdy RW, Warshauer FR (1993) Isoëtes hawaiiensis: a previously undescribed quillwort from Hawaii. Am Fern J 83:67–70CrossRefGoogle Scholar
  51. Tiffney BH (1985) Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. J Arnold Arboretum 66:73–94CrossRefGoogle Scholar
  52. Tkach N, Hoffmann MH, Roeser M, Korobkov AA, Von Hagen KB (2008) Parallel evolutionary patterns in multiple lineages of arctic Artemisia L. (Asteraceae). Evolution 62:184–198PubMedGoogle Scholar
  53. Troia A (2001) The genus Isoëtes L. (Lycophyta, Isoëtaceae): synthesis of karyological data. Webbia 56:201–218CrossRefGoogle Scholar
  54. Tryon R (1986) The biogeography of species, with special reference to ferns. Bot Rev 52:117–156CrossRefGoogle Scholar
  55. Vanderpoorten, A, Gradstein SR, Carine MA, Devos N (2010) The ghosts of Gondwana and Laurasia in modern liverwort distributions. Biol Rev 85:471–487PubMedGoogle Scholar
  56. Wang Q-F, Liu X, Taylor WC, He Z-R (2002) Isoëtes yunguiensis (Isoëtaceae), a new basic diploid quillwort from China. Novon 12:587–591CrossRefGoogle Scholar
  57. Wen J, Ickert-Bond SM, Nie ZL, Li R (2010) Timing and modes of evolution of eastern Asia-North American biogeographic disjunctions in seed plant. In: Long M, Gu H, Zhou Z, eds, Darwin’s heritage today: Proceeding of the Darwin 200 Beijing International Conference. Higher Education Press, Beijing, pp 252–269Google Scholar
  58. White TJ, Birns T, Lee S, Taylor J (1999) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR protocols: A guide to methods and applications, Academic Press, New York, pp 315–322Google Scholar
  59. Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo method. Mol Phylogenet Evol 14:717–724CrossRefGoogle Scholar
  60. Yu H, Nason JD, Ge X, Zeng J (2010) Slatkin’s Paradox: when direct observation and realized gene flow disagree. A case study in Ficus. Mol Ecol 19:4441–4453PubMedGoogle Scholar
  61. Yu Y, Harris AJ, Blair C, He XJ (2015) RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol Phylogenet Evol 87:46–49CrossRefPubMedGoogle Scholar

Copyright information

© Korean Society of Plant Biologists and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Life ScienceGachon UniversitySeongnamKorea
  2. 2.Department of Biological SciencesAjou UniversitySuwonKorea

Personalised recommendations