Advertisement

Journal of Plant Biology

, Volume 55, Issue 1, pp 43–49 | Cite as

Establishment of Glucocorticoid-Mediated Transcriptional Induction of the Rice XA21 Pattern Recognition Receptor

  • Chang-Jin Park
  • Patrick E. Canlas
  • Pamela C. RonaldEmail author
Original Research

Abstract

The rice pattern recognition receptor, XA21, confers robust resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). We have generated transgenic plants that express Xa21 only in the presence of the glucocorticoid hormone, dexamethasone (DEX). DEX-mediated transcriptional induction of Xa21 is accompanied by upregulation of pathogenesis-related 1 gene expression and restriction of Xoo multiplication. The DEX-inducible system can be used to synchronize the XA21-mediated response to infection throughout the entire leaf, facilitating the study of innate immunity.

Keywords

Dexamethasone Glucocorticoid Oryza sativa Pattern recognition receptor XA21 

Abbreviations

DEX

Dexamethasone

GVG

GAL4-binding domain–VP16 activation domain–GR fusion

PRR

Pattern recognition receptor

PR

Pathogenesis-related

Xoo

Xanthomonas oryzae pv. oryzae

Notes

Acknowledgments

We thank Dr. Sang-Wook Han and Dr. Ofir Bahar for critical reading of the manuscript, Dr. Mawsheng Chen for the Gateway-compatible pTA7002 vector, and Randy Ruan for lab and greenhouse management. We also thank Seo Jung Yang and Timothy Tong for the technical assistance. This work was supported by the National Institute of Health (NIH, GM55962) and the National Science Foundation (NSF, IOS-0817738).

Conflict of Interest

The authors declare no competing financial interests.

References

  1. Aoyama T, Chua NH (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11:605–612PubMedCrossRefGoogle Scholar
  2. Century KS, Lagman RA, Adkisson M, Morlan J, Tobias R, Schwartz K, Smith A, Love J, Ronald PC, Whalen MC (1999) Short communication: developmental control of Xa21-mediated disease resistance in rice. Plant J 20:231–236PubMedCrossRefGoogle Scholar
  3. Chen X, Chern M, Canlas PE, Jiang C, Ruan D, Cao P, Ronald PC (2010) A conserved threonine residue in the juxtamembrane domain of the XA21 pattern recognition receptor is critical for kinase autophosphorylation and XA21-mediated immunity. J Biol Chem 285:10454–10463PubMedCrossRefGoogle Scholar
  4. Chern M, Canlas PE, Fitzgerald HA, Ronald PC (2005) Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1. Plant J 43:623–635PubMedCrossRefGoogle Scholar
  5. Han SW, Lee SW, Ronald PC (2011) Secretion, modification, and regulation of Ax21. Curr Opin Microbiol 14:62–67PubMedCrossRefGoogle Scholar
  6. Joubes J, De Schutter K, Verkest A, Inze D, De Veylder L (2004) Conditional, recombinase-mediated expression of genes in plant cell cultures. Plant J 37:889–896PubMedCrossRefGoogle Scholar
  7. Kawai-Yamada M, Jin L, Yoshinaga K, Hirata A, Uchimiya H (2001) Mammalian Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax Inhibitor-1 (AtBI-1). Proc Natl Acad Sci USA 98:12295–12300PubMedCrossRefGoogle Scholar
  8. Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350PubMedCrossRefGoogle Scholar
  9. Lee SW, Han SW, Sririyanum M, Park CJ, Seo YS, Ronald PC (2009) A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 326:850–853PubMedCrossRefGoogle Scholar
  10. Liu X, Bai X, Wang X, Chu C (2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol 164:969–979PubMedCrossRefGoogle Scholar
  11. Lloyd AM, Schena M, Walbot V, Davis RW (1994) Epidermal cell fate determination in Arabidopsis: patterns defined by a steroid-inducible regulator. Science 266:436–439PubMedCrossRefGoogle Scholar
  12. Moore I, Samalova M, Kurup S (2006) Transactivated and chemically inducible gene expression in plants. Plant J 45:651–683PubMedCrossRefGoogle Scholar
  13. Nozue K, Park CJ, Ronald PC (2011) Quantitative measurements of Xanthomonas oryzae pv. oryzae distribution in rice using fluorescent-labeling. J Plant Biol 54:269–274CrossRefGoogle Scholar
  14. Padidam M (2003) Chemically regulated gene expression in plants. Curr Opin Plant Biol 6:169–177PubMedCrossRefGoogle Scholar
  15. Park CJ, Peng Y, Chen X, Dardick C, Ruan D, Bart R, Canlas PE, Ronald PC (2008) Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLoS Biol 6:e231PubMedCrossRefGoogle Scholar
  16. Park CJ, Bart R, Chern M, Canlas PE, Bai W, Ronald PC (2010a) Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice. PLoS One 5:e9262PubMedCrossRefGoogle Scholar
  17. Park CJ, Han SW, Chen X, Ronald PC (2010b) Elucidation of XA21-mediated innate immunity. Cell Microbiol 12:1017–1025PubMedCrossRefGoogle Scholar
  18. Park CJ, Lee SW, Chern M, Sharma R, Canlas PE, Song MY, Jeon JS, Ronald PC (2010c) Ectopic expression of rice Xa21 overcomes developmentally controlled resistance to Xanthomonas oryzae pv. oryzae. Plant Sci 179:466–471PubMedCrossRefGoogle Scholar
  19. Peng Y, Bartley LE, Chen X, Dardick C, Chern M, Ruan R, Canlas PE, Ronald PC (2008) OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol Plant 1:446–458PubMedCrossRefGoogle Scholar
  20. Peng Y, Bartley LE, Canlas P, Ronald PC (2010) OsWRKY IIa transcription factors modulate rice innate immunity. Rice 3:36–42PubMedCrossRefGoogle Scholar
  21. Picard D (1994) Regulation of protein function through expression of chimaeric proteins. Curr Opin Biotechnol 5:511–515PubMedCrossRefGoogle Scholar
  22. Ponciano G, Yoshikawa M, Lee JL, Ronald PC, Whalen MC (2007) Pathogenesis-related gene expression in rice is correlated with developmentally controlled Xa21-mediated resistance against Xanthomonas oryzae pv. oryzae. Physiol Mol Plant Pathol 69:131–139CrossRefGoogle Scholar
  23. Ronald PC, Beutler B (2010) Plant and animal sensors of conserved microbial signatures. Science 330:1061–1064PubMedCrossRefGoogle Scholar
  24. Seo YS, Chern M, Bartley LE, Han M, Jung KH, Lee I, Walia H, Richter T, Xu X, Cao P, Bai W, Ramanan R, Amonpant F, Arul L, Canlas PE, Ruan R, Park CJ, Chen X, Hwang S, Jeon JS, Ronald PC (2011) Towards establishment of a rice stress response interactome. PLoS Genet 7:e1002020PubMedCrossRefGoogle Scholar
  25. Simon R, Igeno MI, Coupland G (1996) Activation of floral meristem identity genes in Arabidopsis. Nature 384:59–62PubMedCrossRefGoogle Scholar
  26. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald PC (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806PubMedCrossRefGoogle Scholar
  27. Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CM (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770PubMedCrossRefGoogle Scholar
  28. Stolarov J, Chang K, Reiner A, Rodgers L, Hannon GJ, Wigler MH, Mittal V (2001) Design of a retroviral-mediated ecdysone-inducible system and its application to the expression profiling of the PTEN tumor suppressor. Proc Natl Acad Sci USA 98:13043–13048PubMedCrossRefGoogle Scholar
  29. Wang D, Weaver ND, Kesarwani M, Dong X (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science 308:1036–1040PubMedCrossRefGoogle Scholar
  30. Wang YS, Pi LY, Chen X, Chakrabarty PK, Jiang J, De Leon AL, Liu GZ, Li L, Benny U, Oard J, Ronald PC, Song WY (2006) Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell 18:3635–3646PubMedCrossRefGoogle Scholar
  31. Widjaja I, Lassowskat I, Bethke G, Eschen-Lippold L, Long HH, Naumann K, Dangl JL, Scheel D, Lee J (2010) A protein phosphatase 2C, responsive to the bacterial effector AvrRpm1 but not to the AvrB effector, regulates defense responses in Arabidopsis. Plant J 61:249–258PubMedCrossRefGoogle Scholar
  32. Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, Sun TP (2007) Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19:3037–3057PubMedCrossRefGoogle Scholar
  33. Zuo J, Chua NH (2000) Chemical-inducible systems for regulated expression of plant genes. Curr Opin Biotechnol 11:146–151PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Korea 2011

Authors and Affiliations

  • Chang-Jin Park
    • 1
  • Patrick E. Canlas
    • 1
  • Pamela C. Ronald
    • 1
    Email author
  1. 1.Department of Plant Pathology, College of Agricultural and Environmental SciencesUniversity of California, DavisDavisUSA

Personalised recommendations