Journal of Plant Biology

, 54:269

Quantitative Measurements of Xanthomonas Oryzae pv. Oryzae Distribution in Rice Using Fluorescent-Labeling

  • Kazunari Nozue
  • Chang-Jin Park
  • Pamela C. Ronald
Original Research

Abstract

The rice host sensor, XA21, confers robust resistance to most strains of Xanthomonas oryzae pv. oryzae (Xoo), the casual agent of bacterial blight disease. Using in planta fluorescence imaging of Xoo strain PXO99Az expressing a green fluorescent protein (Xoo-gfp) we show that XA21 restricts Xoo spread at the point of infection. This noninvasive and quantitative method to measure spatial distribution of Xoo populations in planta facilitates detailed assessment of plant disease resistance.

Keywords

Xanthomonas oryzae pv. oryzae, GFP, Oryza sativa Xa21 

Abbreviations

Xoo

Xanthomonas oryzae pv. oryzae

GFP

green fluorescent protein

CFU

colony-forming unit

Supplementary material

12374_2011_9164_Fig6_ESM.jpg (16 kb)
Fig. S1

Detection of Xoo-gfp in a Kitaake and b XA21-Kitaake immediately after smear inoculation (OD = 0.5 at 600 nm). A weak Xoo-gfp fluorescence signal was observed (upper panels), consistent with a low Xoo population in leaves. Bright field images of identical leaves are shown in lower panels. A bar indicates 1 cm. A color bar indicates Xoo-gfp concentration (CFU/mm2) based on results in Fig. 2b (JPEG 15 kb)

12374_2011_9164_MOESM1_ESM.tif (2.3 mb)
High resolution image (TIFF 2378 kb)
12374_2011_9164_Fig7_ESM.jpg (13 kb)
Fig. S2

Microscopic observation of Xoo-gfp distribution in rice leaves 4 days after smear inoculation. a The surface of XA21-Kitaake leaves inoculated with Xoo-gfp was visualized using a Zeiss Axiophot fluorescence microscope (Jena, Germany). Xoo cells were observed mainly around the bases of broken trichomes (arrows). b Kitaake leaves inoculated with Xoo-gfp. Xoo cells spreads throughout the xylem vessel (arrowhead) from the site of infection at a broken trichome (an arrow). Adaxial sides of leaves were observed using GFP filter set (excitation, 470/40 nm; beam splitter, FT495 nm, emission, 525/50 nm) at ×100 magnification as described in Materials and methods. Bars in a and b, 100 μm (JPEG 12 kb)

12374_2011_9164_MOESM2_ESM.tif (4.3 mb)
High resolution image (TIFF 4451 kb)
12374_2011_9164_Fig8_ESM.jpg (13 kb)
Fig. S3

Xoo-gfp detection in stem and sheath tissues in Kitaake and XA21-Kitaake plants after smear inoculation. Xoo-gfp was inoculated on the stem and sheath tissue. a Fluorescence image and b bright image were obtained from identical leaves of Kitaake and XA21-Kitaake with Xoo-gfp or mock inoculation. Xoo-gfp failed to spread out from inoculated area (shown as a bracket) in XA21-Kitaake. A bar indicates 1 cm. L leaf blade, S sheath and stem, P panicle. An arrowhead indicates the nodes. A color bar indicates Xoo-gfp concentration (CFU/mm2) based on results in Fig. 2b. Kit Kitaake, Xa21-Kit XA21-Kitaake (JPEG 13 kb)

12374_2011_9164_MOESM3_ESM.tif (1.2 mb)
High resolution image (TIFF 1219 kb)

References

  1. Bashan Y, Sharon E, Okon Y, Henis Y (1981) Scanning electron and light-microscopy of infection and symptom development in tomato leaves infected with Pseudomonas Tomato. Physiol Plant Pathol 19:139–144Google Scholar
  2. Cheatham MR, Rouse MN, Esker PD, Ignacio S, Pradel S, Raymundo R, Sparks AH, Forbes GA, Gordon TR, Garrett KA (2009) Beyond yield: plant disease in the context of ecosystem services. Phytopathology 99:1228–1236PubMedCrossRefGoogle Scholar
  3. Chen X, Chern M, Canlas PE, Ruan D, Jiang C, Ronald PC (2010) An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity. Proc Natl Acad Sci USA 107:8029–8034PubMedCrossRefGoogle Scholar
  4. Han S-W, Park C-J, Lee S-W, Ronald P (2008) An efficient method for visualization and growth of fluorescent Xanthomonas oryzae pv. oryzae in planta. BCM Microbiol 8:164Google Scholar
  5. Heese A, Hann DR, Gimenez-Ibanez S, Jones AME, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA 104:12217–12222PubMedCrossRefGoogle Scholar
  6. Heese A, Ludwig AA, Jones JD (2005) Rapid phosphorylation of a syntaxin during the Avr9/Cf-9-race-specific signaling pathway. Plant Physiol 138:2406–2416PubMedCrossRefGoogle Scholar
  7. Huang J (1986) Ultrastructure of bacterial penetration in plants. Annu Rev Phytopathol 24:141–157CrossRefGoogle Scholar
  8. Ju H-J, Samuels TD, Wang Y-S, Blancaflor E, Payton M, Mitra R, Krishnamurthy K, Nelson RS, Verchot-Lubicz J (2005) The potato virus X TGBp2 movement protein associates with endoplasmic reticulum-derived vesicles during virus infection. Plant Physiol 138:1877–1895PubMedCrossRefGoogle Scholar
  9. Kauffman HE, Reddy APK, Hsieh SPY, Merca SD (1973) An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep 57:537–541Google Scholar
  10. Lagopodi AL, Ram AFJ, Lamers GEM, Punt PJ, Van den Hondel CAMJJ, Lugtenberg BJJ, Bloemberg GV (2002) Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Mol Plant Microb Interact 15:172–179CrossRefGoogle Scholar
  11. Lee SW, Han SW, Sririyanum M, Park CJ, Seo YS, Ronald PC (2009) A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 326:850–853PubMedCrossRefGoogle Scholar
  12. Lu X, Tintor N, Mentzel T, Kombrink E, Boller T, Robatzek S, Schulze-Lefert P, Saijo Y (2009) Uncoupling of sustained MAMP receptor signaling from early outputs in an Arabidopsis endoplasmic reticulum glucosidase II allele. Proc Natl Acad Sci USA 106:22522–22527PubMedCrossRefGoogle Scholar
  13. Nino-Liu DO, Ronald PC, Bogdanove AJ (2006) Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 7:303–324PubMedCrossRefGoogle Scholar
  14. Park C-J, Lee S-W, Chern M, Sharma R, Canlas PE, Song M-Y, Jeon J-S, Ronald PC (2010a) Ectopic expression of rice Xa21 overcomes developmentally controlled resistance to Xanthomonas oryzae pv. oryzae. Plant Sci 179:466–471PubMedCrossRefGoogle Scholar
  15. Park CJ, Han SW, Chen X, Ronald PC (2010b) Elucidation of XA21-mediated innate immunity. Cell Microbiol 12:1017–1025PubMedCrossRefGoogle Scholar
  16. Park CJ, Peng Y, Chen X, Dardick C, Ruan D, Bart R, Canlas PE, Ronald PC (2008) Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLoS Biol 6:e231PubMedCrossRefGoogle Scholar
  17. R Development Core Team (2005) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Ed, Vol, Vienna, AustriaGoogle Scholar
  18. Shekhawat GS, Srivastava DN (1972) Mode of infection in bacterial leaf streak of rice and histology of the diseased leaf. Plant Pathol 74:84–90Google Scholar
  19. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804PubMedCrossRefGoogle Scholar
  20. Valdivia RH, Hromockyj AE, Monack D, Ramakrishnan L, Falkow S (1996) Applications for green fluorescent protein (GFP) in the study of hostpathogen interactions. Gene 173:47PubMedCrossRefGoogle Scholar
  21. Venard C, Vaillancourt L (2007) Penetration and colonization of unwounded maize tissues by the maize anthracnose pathogen Colletotrichum graminicola and the related nonpathogen C. sublineolum. Mycologia 99:368–377PubMedCrossRefGoogle Scholar
  22. Wang YS, Pi LY, Chen X, Chakrabarty PK, Jiang J, De Leon AL, Liu GZ, Li L, Benny U, Oard J, Ronald PC, Song WY (2006) Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell 18:3635–3646PubMedCrossRefGoogle Scholar
  23. White FF, Yang B (2009) Host and pathogen factors controlling the rice–Xanthomonas oryzae interaction. Plant Physiol 150:1677–1686PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Korea 2011

Authors and Affiliations

  • Kazunari Nozue
    • 1
  • Chang-Jin Park
    • 2
  • Pamela C. Ronald
    • 2
  1. 1.Department of Plant Biology, College of Biological SciencesUniversity of California, DavisDavisUSA
  2. 2.Department of Plant Pathology, College of Agricultural and Environmental SciencesUniversity of California, DavisDavisUSA

Personalised recommendations