Advertisement

Journal of Plant Biology

, Volume 53, Issue 1, pp 10–18 | Cite as

Role of Ubiquitination in Plant Innate Immunity and Pathogen Virulence

  • Gautam Shirsekar
  • Liangying Dai
  • Yajun Hu
  • Xuejun Wang
  • Lirong Zeng
  • Guo-Liang WangEmail author
Review

Abstract

Plant diseases are a major constraint for stable crop production in the world. Plants are constantly threatened by different pathogens and have developed an array of mechanisms to defend themselves. A growing body of evidence indicates that ubiquitination, which is one of the most important cellular processes for protein modification in eukaryotic organisms, is involved in the regulation of host defense signaling. Pathogens also exploit ubiquitination to block or interfere with plant defenses. Recent studies in a few model plants have demonstrated that ubiquitination plays a critical role in plant–pathogen interactions that lead either to plant resistance or to successful pathogen invasion of the plant host. This review discusses recent findings about the functions of ubiquitination in host defense and pathogen invasion.

Keywords

Ubiquitination Disease resistance Pathogen effector Innate immunity 

Notes

Acknowledgments

We thank the financial support from Natural Science Foundation of China (NSFC, #30828022 and #30871335), the “973” Project (2006CB101904) and U.S. NSF Plant Genome Research Program (#0605017).

References

  1. Abramovitch RB, Kim YJ, Chen S, Dickman MB, Martin GB (2003) Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO J 22:60–69CrossRefPubMedGoogle Scholar
  2. Angot A, Peeters N, Lechner E, Vailleau F, Baud C, Gentzbittel L, Sartorel E, Genschik P, Boucher C, Genin S (2006) Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants. Proc Natl Acad Sci USA 103:14620–14625CrossRefPubMedGoogle Scholar
  3. Armstrong MR, Whisson SC, Pritchard L, Bos JI, Venter E, Avrova AO, Rehmany AP, Bohme U, Brooks K, Cherevach I, Hamlin N, White B, Fraser A, Lord A, Quail MA, Churcher C, Hall N, Berriman M, Huang S, Kamoun S, Beynon JL, Birch PR (2005) An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proc Natl Acad Sci USA 102:7766–7771CrossRefPubMedGoogle Scholar
  4. Azevedo C, Santos-Rosa MJ, Shirasu K (2001) The U-box protein family in plants. Trends Plant Sci 6:354–358CrossRefPubMedGoogle Scholar
  5. Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295:2073–2076CrossRefPubMedGoogle Scholar
  6. Birch PR, Armstrong M, Bos J, Boevink P, Gilroy EM, Taylor RM, Wawra S, Pritchard L, Conti L, Ewan R, Whisson SC, van West P, Sadanandom A, Kamoun S (2009) Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen Phytophthora infestans. J Exp Bot 60:1133–1140CrossRefPubMedGoogle Scholar
  7. Boutet SC, Disatnik MH, Chan LS, Iori K, Rando TA (2007) Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors. Cell 130:349–362CrossRefPubMedGoogle Scholar
  8. Boyes DC, Nam J, Dangl JL (1998) The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc Natl Acad Sci USA 95:15849–15854CrossRefPubMedGoogle Scholar
  9. Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671CrossRefPubMedGoogle Scholar
  10. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814CrossRefPubMedGoogle Scholar
  11. Cunnac S, Occhialini A, Barberis P, Boucher C, Genin S (2004) Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum: identification of novel effector proteins translocated to plant host cells through the type III secretion system. Mol Microbiol 53:115–128CrossRefPubMedGoogle Scholar
  12. de Torres M, Mansfield JW, Grabov N, Brown IR, Ammouneh H, Tsiamis G, Forsyth A, Robatzek S, Grant M, Boch J (2006) Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis. Plant J 47:368–382CrossRefPubMedGoogle Scholar
  13. de Wit PJ (2007) How plants recognize pathogens and defend themselves. Cell Mol Life Sci 64:2726–2732CrossRefPubMedGoogle Scholar
  14. Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:351–361CrossRefPubMedGoogle Scholar
  15. Devoto A, Muskett PR, Shirasu K (2003) Role of ubiquitination in the regulation of plant defence against pathogens. Curr Opin Plant Biol 6:307–311CrossRefPubMedGoogle Scholar
  16. Gimenez-Ibanez S, Hann DR, Ntoukakis V, Petutschnig E, Lipka V, Rathjen JP (2009) AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr Biol 19:423–429CrossRefPubMedGoogle Scholar
  17. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428PubMedGoogle Scholar
  18. Gohre V, Spallek T, Haweker H, Mersmann S, Mentzel T, Boller T, de Torres M, Mansfield JW, Robatzek S (2008) Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr Biol 18:1824–1832CrossRefPubMedGoogle Scholar
  19. Gonzalez-Lamothe R, Tsitsigiannis DI, Ludwig AA, Panicot M, Shirasu K, Jones JD (2006) The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato. Plant Cell 18:1067–1083CrossRefPubMedGoogle Scholar
  20. Goritschnig S, Zhang Y, Li X (2007) The ubiquitin pathway is required for innate immunity in Arabidopsis. Plant J 49:540–551CrossRefPubMedGoogle Scholar
  21. Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269:843–846CrossRefPubMedGoogle Scholar
  22. Groll M, Schellenberg B, Bachmann AS, Archer CR, Huber R, Powell TK, Lindow S, Kaiser M, Dudler R (2008) A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452:755–758CrossRefPubMedGoogle Scholar
  23. Hatfield PM, Gosink MM, Carpenter TB, Vierstra RD (1997) The ubiquitin-activating enzyme (E1) gene family in Arabidopsis thaliana. Plant J 11:213–226CrossRefPubMedGoogle Scholar
  24. Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334CrossRefPubMedGoogle Scholar
  25. Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141–172CrossRefPubMedGoogle Scholar
  26. Holt BF 3rd, Belkhadir Y, Dangl JL (2005) Antagonistic control of disease resistance protein stability in the plant immune system. Science 309:929–932CrossRefPubMedGoogle Scholar
  27. Janjusevic R, Abramovitch RB, Martin GB, Stebbins CE (2006) A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 311:222–226CrossRefPubMedGoogle Scholar
  28. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329CrossRefPubMedGoogle Scholar
  29. Kawasaki T, Nam J, Boyes DC, Holt BF 3rd, Hubert DA, Wiig A, Dangl JL (2005) A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1- and RPS2-mediated hypersensitive response. Plant J 44:258–270CrossRefPubMedGoogle Scholar
  30. Kim HS, Delaney TP (2002) Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. Plant Cell 14:1469–1482CrossRefPubMedGoogle Scholar
  31. Kim HT, Kim KP, Lledias F, Kisselev AF, Scaglione KM, Skowyra D, Gygi SP, Goldberg AL (2007) Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J Biol Chem 282:17375–17386CrossRefPubMedGoogle Scholar
  32. Lee J, Nam J, Park HC, Na G, Miura K, Jin JB, Yoo CY, Baek D, Kim DH, Jeong JC, Kim D, Lee SY, Salt DE, Mengiste T, Gong Q, Ma S, Bohnert HJ, Kwak SS, Bressan RA, Hasegawa PM, Yun DJ (2007) Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J 49:79–90CrossRefPubMedGoogle Scholar
  33. Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Zhang Z, Zhao Q, Feng Q, Zhang H, Wang Z, Wang G, Han B, Wang Z, Zhou B (2009) The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microbe Interact 22:411–420CrossRefPubMedGoogle Scholar
  34. Lin SS, Martin R, Mongrand S, Vandenabeele S, Chen KC, Jang IC, Chua NH (2008) RING1 E3 ligase localizes to plasma membrane lipid rafts to trigger FB1-induced programmed cell death in Arabidopsis. Plant J 56:550–561CrossRefPubMedGoogle Scholar
  35. Liu J, Liu X, Dai L, Wang G (2007) Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. J Genet Genomics 34:765–776CrossRefPubMedGoogle Scholar
  36. Mayo MA, Ziegler-Graff V (1996) Molecular biology of luteoviruses. Adv Virus Res 46:413–460CrossRefPubMedGoogle Scholar
  37. Nomura K, Debroy S, Lee YH, Pumplin N, Jones J, He SY (2006) A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313:220–223CrossRefPubMedGoogle Scholar
  38. Pazhouhandeh M, Dieterle M, Marrocco K, Lechner E, Berry B, Brault V, Hemmer O, Kretsch T, Richards KE, Genschik P, Ziegler-Graff V (2006) F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function. Proc Natl Acad Sci 103(6):1994–1999CrossRefGoogle Scholar
  39. Rosebrock TR, Zeng L, Brady JJ, Abramovitch RB, Xiao F, Martin GB (2007) A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 448:370–374CrossRefPubMedGoogle Scholar
  40. Schwessinger B, Zipfel C (2008) News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr Opin Plant Biol 11:389–395CrossRefPubMedGoogle Scholar
  41. Shirasu K, Lahaye T, Tan MW, Zhou F, Azevedo C, Schulze-Lefert P (1999) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99:355–366CrossRefPubMedGoogle Scholar
  42. Spence J, Sadis S, Haas AL, Finley D (1995) A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 15:1265–1273PubMedGoogle Scholar
  43. Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X (2009) Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137:860–872CrossRefPubMedGoogle Scholar
  44. Sullivan JA, Shirasu K, Deng XW (2003) The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat Rev Genet 4:948–958CrossRefPubMedGoogle Scholar
  45. Takai R, Matsuda N, Nakano A, Hasegawa K, Akimoto C, Shibuya N, Minami E (2002) EL5, a rice N-acetylchitooligosaccharide elicitor-responsive RING-H2 finger protein, is a ubiquitin ligase which functions in vitro in co-operation with an elicitor-responsive ubiquitin-conjugating enzyme, OsUBC5b. Plant J 30:447–455CrossRefPubMedGoogle Scholar
  46. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665CrossRefPubMedGoogle Scholar
  47. Trujillo M, Ichimura K, Casais C, Shirasu K (2008) Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Curr Biol 18:1396–1401CrossRefPubMedGoogle Scholar
  48. van den Burg HA, Tsitsigiannis DI, Rowland O, Lo J, Rallapalli G, Maclean D, Takken FL, Jones JD (2008) The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato. Plant Cell 20:697–719CrossRefPubMedGoogle Scholar
  49. Vierstra RD (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci 8:135–142CrossRefPubMedGoogle Scholar
  50. Wang D, Weaver ND, Kesarwani M, Dong X (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science 308:1036–1040CrossRefPubMedGoogle Scholar
  51. Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094CrossRefPubMedGoogle Scholar
  52. Yaeno T, Iba K (2008) BAH1/NLA, a RING-type ubiquitin E3 ligase, regulates the accumulation of salicylic acid and immune responses to Pseudomonas syringae DC3000. Plant Physiol 148:1032–1041CrossRefPubMedGoogle Scholar
  53. Ye Y, Meyer HH, Rapoport TA (2003) Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J Cell Biol 162:71–84CrossRefPubMedGoogle Scholar
  54. Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm BH, Leung H, Wang GL (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795–2808CrossRefPubMedGoogle Scholar
  55. Zhou R, Silverman N, Hong M, Liao DS, Chung Y, Chen ZJ, Maniatis T (2005) The role of ubiquitination in Drosophila innate immunity. J Biol Chem 280:34048–34055CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Korea 2009

Authors and Affiliations

  • Gautam Shirsekar
    • 2
  • Liangying Dai
    • 1
  • Yajun Hu
    • 1
  • Xuejun Wang
    • 1
  • Lirong Zeng
    • 3
  • Guo-Liang Wang
    • 1
    • 2
    Email author
  1. 1.Hunan Provincial Key Laboratory of Crop Germplasm Innovation and UtilizationHunan Agricultural UniversityChangshaChina
  2. 2.Department of Plant PathologyThe Ohio State UniversityColumbusUSA
  3. 3.Biology DepartmentUniversity of ArkansasLittle RockUSA

Personalised recommendations