Journal of Plant Biology

, Volume 53, Issue 1, pp 32–44 | Cite as

Accumulation of High Levels of ABA Regulates the Pleiotropic Response of the nhr1 Arabidopsis Mutant

  • Francisco Quiroz-Figueroa
  • Adrián Rodríguez-Acosta
  • Amed Salazar-Blas
  • Elizabeta Hernández-Domínguez
  • Maria Eugenia Campos
  • Nobutaka Kitahata
  • Tadao Asami
  • Rosa M. Galaz-Avalos
  • Gladys I. Cassab


Plants have evolved a variety of mechanisms for responding to environmental cues, which allows them to survive in the presence of limited resources or environmental stresses. One of the most significant growth adaptations plants have attained is tropism, a growth response that involves bending of plant organs toward or away from a stimulus. Roots exhibit hydrotropism in response to moisture gradients, which is thought to be critical in acquiring water and establishing their stand in the soil. However, the mechanism underlying hydrotropism remains unsolved. Here, we report that the no hydrotropic response (nhr1) mutant of Arabidopsis, which is impaired in hydrotropism, is tolerant to drought. The no hydrotropic response phenotype of nhr1 was repressed by AbamineSG, an inhibitor of abscisic acid (ABA) biosynthesis, indicating that ABA negatively regulates hydrotropism. Furthermore, the content of ABA was higher in nhr1 compared to those of wild type (wt). However, the higher ABA levels in nhr1 plants were not due to higher transcript levels of 9-cis-epoxycarotenoid dioxygenase (NCED3), since these were diminished compared to those of wt. Our results indicated that the root hydrotropic response of the nhr1 mutant is modulated by ABA and that the higher ABA levels of the mutant might confer it drought resistance.


ABA-hypersensitive mutant AbamineSG Abscisic acid (ABA) Arabidopsis thaliana Hydrotropism Drought tolerance 



We warmly thank R. Martínez for assisting with computer maintenance and E. López, S. Becerra, J. Yáñez, and P. Gaytán from the Unidad de Síntesis y Secuenciación IBT-UNAM for providing good oligonucleotides on time. This work was supported by grants from the Dirección General de Asuntos del Personal Académico (UNAM, Grants No. IN214207 and IN220807) and by the Consejo Nacional de Ciencia y Tecnología (Grants No. 46022Q and 81533).


  1. Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P, Jullien M (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:479–488CrossRefPubMedGoogle Scholar
  2. Battisti D, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244CrossRefPubMedGoogle Scholar
  3. Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P (1993) Physiological signals that induce flowering. The Plant Cell 5:1147–1155CrossRefPubMedGoogle Scholar
  4. Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. The Plant Cell 7:1099–1111CrossRefPubMedGoogle Scholar
  5. Cassab GI (2008) Other tropisms and relationship to gravitropism. In: Gilroy S, Masson PH (eds) Plant tropisms. Blackwell, London, pp 123–139Google Scholar
  6. Dai X, Yun Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB Gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751CrossRefPubMedGoogle Scholar
  7. Darwin C (1881) The power of movement in plants. Da Capo, New York, pp 1–592, edition published by D. Appleton and Co. 1966Google Scholar
  8. de Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481CrossRefPubMedGoogle Scholar
  9. De Smet I, Zhang H, Inzé D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11:434–439CrossRefPubMedGoogle Scholar
  10. Eapen D, Barroso ML, Campos ME, Ponce G, Corkidi G, Dubrovsky JG, Cassab GI (2003) A no hydrotropic response root mutant that responds positively to gravitropism in Arabidopsis. Plant Physiol 131:536–546CrossRefPubMedGoogle Scholar
  11. Eapen D, Barroso ML, Ponce G, Campos ME, Cassab GI (2005) Hydrotropism: root growth responses to water. Trends Plant Sci 10:44–50CrossRefPubMedGoogle Scholar
  12. Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. The Plant Cell 14:S15–S45PubMedGoogle Scholar
  13. Gubler F, Millar AA, Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8:183–187CrossRefPubMedGoogle Scholar
  14. Han SY, Kitahata N, Sekimata K, Saito T, Kobayashi M, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K, Yoshida S, Asami T (2004) A novel inhibitor of 9-cis-epoxycarotenoid dioxygenase in abscisic acid biosynthesis in higher plants. Plant Physiol 135:1574–1582CrossRefPubMedGoogle Scholar
  15. Ho MD, McCannon BC, Lynch JP (2004) Optimization modeling of plant root architecture for water and phosphorus acquisition. J Theor Biol 226:331–340CrossRefPubMedGoogle Scholar
  16. Ho MD, Rosas JC, Brown KM, Lynch JP (2005) Root architectural tradeoffs for water and phosphorus acquisition. Funct Plant Biol 32:737–748CrossRefGoogle Scholar
  17. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333CrossRefPubMedGoogle Scholar
  18. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291CrossRefPubMedGoogle Scholar
  19. Kitahata N, Han SY, Noji N, Saito T, Kobayashi M, Nakano T, Kuchitsu K, Shinozaki K, Yoshida S, Matsumoto S, Tsujimoto M, Asami T (2006) A 9-cis-epoxycarotenoid dioxygenase inhibitor for use in the elucidation of abscisic acid action mechanisms. Bioorg Med Chem 14:5555–5561CrossRefPubMedGoogle Scholar
  20. Kobayashi A, Takahashi A, Kakimoto Y, Miyazawa Y, Fujii N, Higashitani A, Takahashi H (2007) A gene essential for hydrotropism in roots. Proc Natl Acad Sci U S A 104:4724–4729CrossRefPubMedGoogle Scholar
  21. Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383CrossRefGoogle Scholar
  22. Lynch J, Brown KM (1997) Ethylene and plant responses to nutritional stress. Physiol Plant 100:613–619CrossRefGoogle Scholar
  23. Miyazawa Y, Takahashi A, Kobayashi A, Kaneyasu T, Fujii N, Takahashi H (2008) The GNOM-mediated vesicular trafficking plays an essential role in hydrotropism of Arabidopsis roots. Plant Physiol 149:835–840CrossRefPubMedGoogle Scholar
  24. Miyazawa Y, Takahashi A, Kobayashi A, Kaneyasu T, Fujii N, Takahashi H (2009) The GNOM-mediated vesicular trafficking plays an essential role in hydrotropism of Arabidopsis roots. Plant Physiol 149:835–840Google Scholar
  25. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  26. Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104(42):16450–16455Google Scholar
  27. Niklas KJ (1997) The evolutionary biology of plants. The University of Chicago Press, USA, pp 1–449Google Scholar
  28. Nishimura N, Kitahata N, Seki M, Narusaka Y, Narusaka M, Kuromori T, Asami T, Shinozaki K, Hirayama T (2005) Analysis of ABA hypersensitive germination2 revealed the pivotal functions of PARN in stress response in Arabidopsis. Plant J 44:972–984CrossRefPubMedGoogle Scholar
  29. Ponce G, Rasgado FA, Cassab GI (2008) Roles of amyloplasts and water deficit in root tropisms. Plant Cell Environ 31:205–217PubMedGoogle Scholar
  30. Rossel JB, Walter PB, Hendrickson L, Chow WS, Poole A, Mullineaux PM, Pogson BJ (2006) A mutation affecting ASCORBATE PEROXIDASE 2 gene expression reveals a link between responses to high light and drought tolerance. Plant Cell Environ 29:269–281CrossRefPubMedGoogle Scholar
  31. Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of Maize. Science 276:1872–1874CrossRefPubMedGoogle Scholar
  32. Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55:2343–2351CrossRefPubMedGoogle Scholar
  33. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227CrossRefPubMedGoogle Scholar
  34. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417CrossRefPubMedGoogle Scholar
  35. Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:285–289CrossRefPubMedGoogle Scholar
  36. Takahashi N, Yamazaki Y, Kobayashi A, Higashitani A, Takahashi H (2003) Hydrotropism interacts with gravitropism by degrading amyloplasts in seedling roots of Arabidopsis and radish. Plant Physiol 132:805–810CrossRefPubMedGoogle Scholar
  37. Vartanian N, Marcotte L, Giraudat J (1994) Drought rhizogenesis in Arabidopsis thaliana (differential responses of hormonal mutants). Plant Physiol 104:761–767PubMedGoogle Scholar
  38. Xiong L, Wang RG, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142:1065–1074CrossRefPubMedGoogle Scholar
  39. Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94CrossRefPubMedGoogle Scholar
  40. Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Korea 2009

Authors and Affiliations

  • Francisco Quiroz-Figueroa
    • 1
  • Adrián Rodríguez-Acosta
    • 1
  • Amed Salazar-Blas
    • 1
  • Elizabeta Hernández-Domínguez
    • 1
  • Maria Eugenia Campos
    • 1
  • Nobutaka Kitahata
    • 2
  • Tadao Asami
    • 2
    • 3
  • Rosa M. Galaz-Avalos
    • 4
  • Gladys I. Cassab
    • 1
  1. 1.Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
  2. 2.Laboratory of Plan FunctionalRIKEN Wako InstituteWakoJapan
  3. 3.Department of Applied Biological ChemistryThe University of TokyoTokyoJapan
  4. 4.Unidad de Bioquímica y Biología Molecular de PlantasCentro de Investigación Científica de YucatánMéridaMexico

Personalised recommendations