Advertisement

Geoheritage

pp 1–9 | Cite as

Geological Features and Physical and Mechanical Properties of the Gorgoglione Building Stone of Basilicata (Southern Italy)

  • Vincenzo De LucaEmail author
  • Mario Bentivenga
  • Francesco Cavalcante
  • Marco Lezzerini
  • Cosimo Marano
  • Giuseppe Palladino
  • Giacomo Prosser
Original Article
  • 8 Downloads
Part of the following topical collections:
  1. Geoheritage: the foundation for sustainable geotourism

Abstract

Since prehistoric times stones have been widely employed in the construction of historic buildings, floors, and claddings in rural and urban areas. Among the Italian natural stones, the sandstone belonging to the Gorgoglione Formation, known as the Gorgoglione Stone, quarried and worked near the homonymous village in Basilicata (Southern Italy), is usually used as a building material. The Gorgoglione Stone consists of well-cemented turbidite sandstones deposited in a Middle–Upper Miocene thrust-top basin unconformably resting on the external nappes of the Southern Apennine thrust belt. In the Gorgoglione area, it can be observed in either numerous natural outcrops or quarries. This study aims to highlight the geological peculiarities of the Gorgoglione Stone and, in particular, it is focused on its mechanical characterization for assessing the most effective use when employed in construction, such as public and civil buildings, road construction, paving, and small works of art. Based on the experimental results, obtained by samples collected from different quarries, axial stress–strain curves have been plotted, whose analysis has delivered the deformation behavior and the strength characteristics of the stone. The elastic modulus, uniaxial compressive strength, and axial strain at stress peak have been estimated for several specimens. The measured values are typically of a medium–high-strength sandstone. The tested specimens of sandstone exhibit a typical behavior of an elastic-brittle rock, characterized by a linear path and a failure typically of axial splitting. With regard to the results of the physical tests, they showed that the analyzed sandstone is characterized by quite low density and by medium–high porosity and water absorption.

Keywords

Building stone Sandstone Durability Geoheritage Southern Apennines 

Notes

Acknowledgments

We would like to thank the Grieco brothers of Gorgoglione for supplying the Gorgoglione sandstone sampling. We also would like to thank two anonymous reviewers for the useful suggestions provided to improve the manuscript.

References

  1. Benavente D, García del Cura MA, Fort R, Ordóñez S (2004) Durability estimation of porous building stones from pore structure and strength. Eng Geol 74:113–127CrossRefGoogle Scholar
  2. Boenzi F, Ciaranfi N (1970) Stratigrafia di dettaglio del «Flysch di Gorgoglione» (Lucania). Mem Soc Geol Ital 9:65–79Google Scholar
  3. Boiano U (1997) Anatomy of a siliciclastic turbidite basin: the Gorgoglione Flysch, Upper Miocene, southern Italy: physical stratigraphy, sedimentology and sequence-stratigraphic framework. Sediment Geol 107(3–4):231–262CrossRefGoogle Scholar
  4. Boiano U, Critelli S, Lojacono F, Pescatore T, Sbarra R (1994) Le successioni terrigene esterne dell’Appennino Lucano. Guida alle escursioni Congr. Soc. Geol. Ital., Bari 1994. Quad Bibl Prov Matera 15:157–203Google Scholar
  5. Bone DA (2016) Historic building stones and their distribution in the churches and chapels of West Sussex, England. Proc Geol Assoc 127(1):53–77, ISSN 0016-7878.  https://doi.org/10.1016/j.pgeola.2016.02.001 CrossRefGoogle Scholar
  6. Cavalcante F, Fiore S, Lettino A, Piccarreta G, Tateo F (2007) Illite-smectite mixed layers in sicilide shales and piggy-back deposits of the Gorgoglione Formation (Southern Apeninnes): geological inferences. Boll Soc Geol It (Ital J Geosci) 126(2):241–254Google Scholar
  7. Cavalcante F, Prosser G, Agosta F, Belviso C, Corrado G (2015) Post-depositional history of the Miocene Gorgoglione Formation (Southern Apennines, Italy): inferences from mineralogical and structural analyses. Boll Soc Geol France 186(4-5):243–256CrossRefGoogle Scholar
  8. Columbu S, Gioncada A, Lezzerini M, Marchi M (2014) Hydric dilatation of ignimbritic stones used in the church of Santa Maria di Otti (Oschiri, northern Sardinia, Italy). Ital J Geosci (Boll Soc Geol It) 133(1):149–160.  https://doi.org/10.3301/IJG.2013.20 CrossRefGoogle Scholar
  9. Cowie S, Walton G (2018) The effect of mineralogical parameters on the mechanical properties of granitic rocks. Eng Geol 240:204–225.  https://doi.org/10.1016/j.enggeo.2018.04.021 CrossRefGoogle Scholar
  10. De Kock T, De Boever W, Dewanckele J, Boone MA, Jacobs P, Cnudde V (2015) Characterization, performance and replacement stone compatibility of building stone in the 12th century tower of Dudzele (Belgium). Eng Geol 184:43–51CrossRefGoogle Scholar
  11. Doglioni C, Harabaglia P, Martinelli G, Mongelli F, Zito G (1996) A geodinamic model of the Southern Apennines accretionary prism. Terra Nova 8:540–547CrossRefGoogle Scholar
  12. EN 13755 (2008) Natural stone test methods - determination of water absorption at atmospheric pressureGoogle Scholar
  13. EN 1925 (1999) Natural stone test methods - determination of water absorption coefficient by capillarityGoogle Scholar
  14. EN 1926 (2006) Natural stone test methods - determination of compressive strengthGoogle Scholar
  15. EN 1936 (2007) Natural stone test methods - determination of real density and apparent density, and of total and open porosityGoogle Scholar
  16. Gioncada A, Gonzalez-Ferran O, Lezzerini M, Mazzuoli R, Bisson M, Rapue SA (2010) The volcanic rocks of Easter Island (Chile) and their use for the Moai sculptures. Eur J Mineral 22:855–867CrossRefGoogle Scholar
  17. Gioncada A, Leoni L, Lezzerini M, Miriello D (2011) Relationships between mineralogical and textural factors in respect to hydric dilatation of some sandstones and meta-sandstones from the Northern Apennine. Ital J Geosci (Boll Soc Geol It) 130(3):394–403Google Scholar
  18. Gueguen E, Doglioni C, Fernandez M (1998) On the post-25 Ma geodynamic evolution of the western Mediterranean. Tectonophysics. 298:259–269CrossRefGoogle Scholar
  19. Laurita S, Prosser G, Rizzo G, Langone A, Tiepolo M, Laurita A (2014) Geochronological study of zircons from continental crust rocks in the Frido Unit (Southern Apennines). Int J Earth Sci (Geol Rundsch)Google Scholar
  20. Lentini F, Carbone S, Catalano S, Monaco C (1987) Confronti sedimentologici-petrografici e posizione strutturale dei Flysch di Albidona e di Gorgoglione nella media val D’Agri (Appennino lucano). Mem Soc Geol It 38:259–273Google Scholar
  21. Lentini F, Carbone S, Di Stefano A, Guarnieri P (2002) Stratigraphical and structural constraints in the Lucanian Apennines (Southern Italy): tools for reconstructing the geological evolution. J Geodyn 34:141–158CrossRefGoogle Scholar
  22. Lezzerini M, Franzini M, Di Battistini G, Zucchi D (2008) The “Macigno” sandstone from Matraia and Pian di Lanzola quarries (north-western Tuscany, Italy). A comparison of physical and mechanical properties. Atti Soc Tosc Sci Nat Mem A 113:71–79Google Scholar
  23. Lezzerini M, Antonelli F, Columbu S, Gadducci R, Marradi A, Miriello D, Parodi L, Secchiari L, Lazzeri A (2016) Cultural heritage documentation and conservation: three-dimensional (3D) laser scanning and Geographical Information System (GIS) techniques for thematic mapping of façade stonework of St. Nicholas Church (Pisa, Italy). Int J Architectl Herit 10(1):9–19.  https://doi.org/10.1080/15583058.2014.924605 CrossRefGoogle Scholar
  24. Li S, Lajtai EZ (1998) Modeling the stress–strain diagram for brittle rock loaded in compression. Mech Mater 30:243–251CrossRefGoogle Scholar
  25. Loiacono F (1974) Osservazioni sulle direzioni delle paleocorrenti nel Flysch di Gorgoglione (Lucania). Bull Soc Geol It 93:1127–1155Google Scholar
  26. Loiacono F (1993) Geometrie e caratteri deposizionali dei corpi arenacei nella successione stratigrafica del Flysch di Gorgoglione (Miocene superiore, Appennino meridionale). - Boll. Soc Geol Ital 112:909–922Google Scholar
  27. Ludovico-Marques M, Chastre C, Vasconcelos G (2012) Modelling the compressive mechanical behaviour of granite and sandstone historical building stones. Constr Build Mater 28:372–381CrossRefGoogle Scholar
  28. Maffione M, Speranza F, Cascella A, Longhitano S, Chiarella D (2013) A ≈ 125° post-Early Serravallian counterclockwise rotation of the Gorgoglione Formation (Southern Apennines, Italy): new constraints for the formation of the Calabrian Arc. Tectonophysics 590:24–37CrossRefGoogle Scholar
  29. Martínez-Martínez J, Benavente D, Gomez-Heras M, Marco-Castaño L, Ángeles García-del-Cura M (2013) Non-linear decay of building stones during freeze–thaw weathering processes. Constr Build Mater 38:443–454CrossRefGoogle Scholar
  30. Menardi Noguera A, Rea G (2000) Deep structure of the Campanian-Lucanian Arc (Southern Apennine, Italy). Tectonophysics 324:239–265CrossRefGoogle Scholar
  31. Mostardini F, Merlini S (1986) Appennino centromeridionale. Sezioni geologiche e proposta di modello strutturale. Mem Soc Geol It 35:177–202Google Scholar
  32. Ogniben L (1969) Schema introduttivo alla geologia del confine calabro-lucano. Mem Soc Geol It 8:453–763Google Scholar
  33. Palchik V (1999) Influence of the porosity and elastic modulus on uniaxial compressive strength in soft brittle porous sandstones. Rock Mech Rock Eng 32(4):303–309CrossRefGoogle Scholar
  34. Patacca E, Scandone P (2007) Geology of the Southern Apennines. Boll Soc Geol Ital (Italian J Geosci) 7:75–119Google Scholar
  35. Pescatore T, Senatore M (1986) A comparison between a present-day (Taranto Gulf) and a Miocene (Irpinian Basin) foredeep of the Southern Apennines (Italy). Spec Publs Int Ass Sediment 8:169–182Google Scholar
  36. Rodgers M, Hayes G, Healy MG (2009) Cyclic loading tests on sandstone and limestone shale aggregates used in unbound forest roads. Constr Build Mater 23:2421–2427CrossRefGoogle Scholar
  37. Schetttino A, Turco E (2011) Tectonic history of the western Tethys since the Late Triassic. GSA Bull 123:89–105CrossRefGoogle Scholar
  38. Scrivano S, Gaggero L, Aguilar JG (2018) Micro-porosity and minero-petrographic features influences on decay: experimental data from four dimension stones. Constr Build Mater 173:342–349.  https://doi.org/10.1016/j.conbuildmat.2018.04.041 CrossRefGoogle Scholar
  39. Selli R (1962) Il Paleogene nel quadro della geologia dell’Italia Meridionale. Mem Soc Geol It 3:733–789Google Scholar
  40. Zoghlami K, Martín-Martín JD, Gómez-Gras D, Navarro A, Parcerisa D, Rosell JR (2017) The building stone of the Roman city of Dougga (Tunisia): provenance, petrophysical characterisation and durability. Compt Rendus Geosci 349(8):402–411.  https://doi.org/10.1016/j.crte.2017.09.017 CrossRefGoogle Scholar

Copyright information

© The European Association for Conservation of the Geological Heritage 2019

Authors and Affiliations

  • Vincenzo De Luca
    • 1
    Email author
  • Mario Bentivenga
    • 1
  • Francesco Cavalcante
    • 2
  • Marco Lezzerini
    • 3
  • Cosimo Marano
    • 4
  • Giuseppe Palladino
    • 1
    • 5
  • Giacomo Prosser
    • 1
  1. 1.Dipartimento di ScienzeUniversità della BasilicataPotenzaItaly
  2. 2.IMAACNRPotenzaItaly
  3. 3.Dipartimento di Scienze della TerraUniversità di PisaPisaItaly
  4. 4.SAFEUniversità della BasilicataPotenzaItaly
  5. 5.Geology and Petroleum GeologyUniversity of AberdeenAberdeenUK

Personalised recommendations