, Volume 11, Issue 3, pp 1199–1219 | Cite as

Waterfalls as Geological Value for Geotourism: the Case of Ordesa and Monte Perdido National Park

  • J. A. Ortega-BecerrilEmail author
  • I. Polo
  • A. Belmonte
Original Article


Studies of the variables that make waterfalls an undoubted attraction for geotourism remain relatively rare. Through surveys in Parque Nacional de Ordesa and Monte Perdido (Spain), we analyze some of the most important variables of waterfalls, such as morphological characteristics, discharge, or esthetic aspects, including scenery. Statistical analysis reveals differences in the perception of attractiveness between seasons of the year. Spring seems to produce the best effect. Changes in perception affect most of the variables studied. However, there are complex relationships between seasons of the year and the variables studied. Slight changes in discharge lead to a positive perception by geotourists of morphological and esthetic variables, although these variables are apparently disconnected. The correlation between scenery and waterfall beauty is significant, at a 0.05 p value, but despite this, geotourists do not choose any specific environment as the best location for a waterfall. Surprisingly, an urban environment can become an ideal place, at the same level as a different but wilder one. The geological characteristics that encompass a waterfall are another strong and important point in the preferences of the visitor. The abundant scientific-geological information about waterfalls and their surroundings could be used as an informative complement to improve the quality of visits. Geotourists already demand this information. An adequate waterfall classification, the use of genetic aspects, and the processes involved in a specific waterfall feature could be of interest in interpretative signs or brochures. The findings of our study could be used in management strategies as new designs for viewing points, trail access, location of interpretative boards, and educational programs.


Waterfall Knickpoint Geotourism Bedrock rivers Ordesa and Monte Perdido National Park 



We thank to anonymous PNOMP visitors who kindly collaborate with the survey. This paper benefited from review comments by G. Garzón. We also thank to Ana Nieto for figure design in geological background section.

Funding Information

This work was supported by Geomateriales 2 programme (S2013/MIT-2914) and Top Heritage (P2018/NMT-4372) from the Regional Government of Madrid (Spain). Sobrarbe-Pirineos UNESCO Global Geopark funded the former research through project GEO.


  1. Andrés-Abellán M, Del Álamo JB, Landete-Castillejos T, Lopez-Serrano FR, Garcia-Morote FA, Del Cerro-Barja A (2005) Impacts of visitors on soil and vegetation of the recreational area “Nacimiento del Rio Mundo” (Castilla-La Mancha, Spain). Environ Monit Assess 101(1–3):55–67Google Scholar
  2. Alexandrowicz Z (1994) Geologically controlled waterfall types in the Outer Carpathians. Geomorphology 9(2):155–165CrossRefGoogle Scholar
  3. Baker VR (1973) Paleohydrology and sedimentology of Lake Missoula flooding in eastern Washington, vol 144. Geological Society of America, BoulderGoogle Scholar
  4. Baker VR, Benito G, Rudoy AN (1993) Paleohydrology of late Pleistocene superflooding, Altay Mountains, Siberia. Science 259(5093):348–350CrossRefGoogle Scholar
  5. Bartolomé M, Sancho C, Leunda M, Moreno A, Belmonte Á, Oliva-Urcía B, López-Moreno JI, St. Pierre D (2016, in spanish) Evolución del volumen de hielo en la cueva de Casteret en los últimos 50 años (Parque Nacional de Ordesa y Monte Perdido, Huesca). XIV Reunión Nacional de Geomorfología, MálagaGoogle Scholar
  6. Bătinaş RH (2010) The methodology for assessing the potential attractiveness of waterfalls as tourist attractions. Studia Universitatis Babeş–Bolyai, (2):205–212Google Scholar
  7. Beisel RH (2006) International waterfall classification system. Outskirts Press, Denver (CO), USAGoogle Scholar
  8. Bell PA, Greene TC, Fisher JD, Baum A (2001) Environmental psychology. Harcourt College Publishers, OrlandoGoogle Scholar
  9. Belmonte A, Carcavilla L, Ara MP, Sampietro S (2017), (in spanish) Caracterización del geoturista en un geoparque de montaña (Sobrarbe-Pirineos, Huesca). In: Carcavilla L, Duque-Macías J, Giménez J, Hilario A, Monge-Gamuzas M, Vegas J, Rodríguez A (eds.) Patrimonio geológico, gestionando la parte abiótica del patrimonio natural. Cuadernos del Museo Geominero, 21: pp259–264Google Scholar
  10. Bishop P, Hoey TB, Jansen JD, Artza IL (2005) Knickpoint recession rate and catchment area: the case of uplifted rivers in Eastern Scotland. Earth Surf Process Landf 30(6):767–778CrossRefGoogle Scholar
  11. Bodoque JM, Ballesteros-Cánovas JA, Rubiales JM, Perucha MÁ, Nadal-Romero E, Stoffel M (2017) Quantifying soil erosion from hiking trail in a protected natural area in the Spanish Pyrenees. Land Degrad Dev 28(7):2255–2267CrossRefGoogle Scholar
  12. Boes RM, Hiller PH, Killingtveit A (2011) Visual effects of waterfalls affected by water diversion. In: Valentine EM, Apelt CJ, Ball J, Chanson H, Cox R, Ettema R, Kuczera G, Lambert M, Melville BW, Sargison JE (eds). Proceedings of the 34th IAHR congress. Brisbane, Australia, pp2760–2767Google Scholar
  13. Burbank DW, Anderson RS (2011) Tectonic geomorphology. John Wiley & Sons, ChichesterCrossRefGoogle Scholar
  14. Carcavilla L, López-Martínez J, Durán JJ (2007) (in spanish) Patrimonio geológico y geodiversidad: investigación, conservación y relación con los espacios naturales protegidos. Publicaciones del Instituto Geológico y Minero de España, Serie: Cuadernos del Museo Geominero 7, MadridGoogle Scholar
  15. Carcavilla L, Berrio MP, Belmonte A, Durán JJ, López-Martínez J (2010, in spanish) La divulgación de la Geología al gran público: principios y técnicas para el diseño de material escrito. Boletín de la Real Sociedad Española de Historia Natural, Sección geológica 104 (1–4): 93–110Google Scholar
  16. Castillo M, Lugo-Hubp J (2011) (in spanish) Estado actual del conocimiento, clasificación y propuesta de inclusión del término knickpoint en el léxico geológico-geomorfológico del español. Bol Soc Geol Mex 63(2):353–364Google Scholar
  17. Castillo M, Bishop P, Jansen JD (2013) Knickpoint retreat and transient bedrock channel morphology triggered by base-level fall in small bedrock river catchments: the case of the Isle of Jura, Scotland. Geomorphology:180: 1–180: 9Google Scholar
  18. Cole DN, Marion JL (1988) Recreation impacts in some riparian forests of the eastern United States. Environ Manag 12:99–107CrossRefGoogle Scholar
  19. Crosby BT, Whipple KX, Gasparini NM, Wobus CW (2007) Formation of fluvial hanging valleys: theory and simulation. J Geophys Res 112(F3)Google Scholar
  20. García Ruiz JM, Martí Bono CE (2001) (in spanish) Mapa geomorfológico del Parque Nacional de Ordesa y Monte Perdido. Organismo Autónomo de Parques Nacionales. Serie Técnica 106Google Scholar
  21. Gardner TW (1983) Experimental study of knickpoint and longitudinal profile evolution in cohesive, homogeneous material. Geol Soc Am Bull 94:664–672CrossRefGoogle Scholar
  22. Gilbert GK (1907) Rate of recession of Niagara Falls. Bull US Geol Surv 306:1–31Google Scholar
  23. Göktuğ TH, Bulut Y, Yıldız ND, Demir M (2013) Carrying capacity assessment of Tortum waterfall, Turkey. Fresen Environ Bull 22(12b):3783–3791Google Scholar
  24. Gómez-Heras M, Ortega-Becerril J, Garrote J, Fort R, López-González L (2019) Morphometric measurements of bedrock rivers at different spatial scales and applications to geomorphologic heritage research. Prog Earth Planet Sc 6:29CrossRefGoogle Scholar
  25. Gray M (2004) Geodiversity: valuing and conserving abiotic nature. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, EnglandGoogle Scholar
  26. Haghe JP (2011) Do waterfalls have value in themselves? A metamorphosis in the values of the Gimel waterfall in France. Polic Soc 30(4):249–256CrossRefGoogle Scholar
  27. Haviv I, Enzel Y, Whipple KX, Zilberman E, Matmon A, Stone J, Fifield KL (2010) Evolution of vertical knickpoints (waterfalls) with resistant caprock: insights from numerical modeling. J Geophys Res 115(F3)Google Scholar
  28. Hayakawa Y, Matsukura Y (2003) Recession rates of waterfalls in Boso Peninsula, Japan, and a predictive equation. Earth Surf Process Landf 28(6):675–684CrossRefGoogle Scholar
  29. Hayakawa YS, Yokoyama S, Matsukura Y (2008) Erosion rates of waterfalls in post-volcanic fluvial systems around Aso volcano, southwestern Japan. Earth Surf Process Landf 33(5):801–812CrossRefGoogle Scholar
  30. Hayakawa YS, Matsuta N, Matsukura Y (2009) Rapid recession of fault-scarp waterfalls: six-year changes following the 921 Chi-Chi earthquake in Taiwan. Chikei/transactions. Trans Jap Geom Union 30(1):1–13Google Scholar
  31. Hose TA (2012) 3G’s for modern geotourism. Geoheritage 4(1–2):7–24CrossRefGoogle Scholar
  32. Hudson BJ (1998) Waterfalls resources for tourism. Ann Tour Res 25(4):958–973CrossRefGoogle Scholar
  33. Hudson BJ (2002) Best after rain: waterfall discharge and the tourist experience. Tour Geogr 4(4):440–456CrossRefGoogle Scholar
  34. Itami RM (2002) Estimating capacities for pedestrian walkways and viewing platforms. An report to parks. Victoria Report. pp 20Google Scholar
  35. Lamb MP, Dietrich WE (2009) The persistence of waterfalls in fractured bedrock. Geol Soc Am Bull 121(7–8):1123–1134CrossRefGoogle Scholar
  36. López-Moreno JI, Revuelto J, Rico I, Chueca-Cía J, Julián A, Serreta A, Serrano E, Vicente-Serrano SM, Azorín-Molina C, Alonso-González E, García-Ruiz JM (2016) Thining of the Monte Perdido glacier in the Spanish Pyrenees since 1981. Cryosphere 10:681–694CrossRefGoogle Scholar
  37. Manning RE (2003) What to do about crowding and solitude in parks and wilderness? A reply to Stewart and Cole. J Leis Res 35(1):107–118CrossRefGoogle Scholar
  38. Meijer XD (2002) Modelling the drainage evolution of a river-shelf system forced by quaternary glacio-eustasy. Basin Res 14(3):361–377CrossRefGoogle Scholar
  39. Merritts DJ, Vincent KR, Wohl EE (1994) Long river profiles, tectonism, and eustasy: a guide to interpreting fluvial terraces. J Geophys Res 99(B7):14031–14050CrossRefGoogle Scholar
  40. Mikhailenko AV, Nazarenko OV, Ruban DA, Zayats PP (2017) Aesthetics-based classification of geological structures in outcrops for geotourism purposes: a tentative proposal. Geologos 23(1):45–52CrossRefGoogle Scholar
  41. Miller JR (1990) The influence of bedrock geology on knickpoint development and channel-bed degradation along downcutting streams in south-central Indiana. J Geol 99(4):591–605CrossRefGoogle Scholar
  42. Moreira JC (2012) Interpretative panels about the geological heritage—a case study at the Iguassu Falls National Park (Brazil). Geoheritage 4(1–2):127–137CrossRefGoogle Scholar
  43. Newsome D, Dowling R (eds) (2010) Geotourism: the tourism of geology and landscape. Goodfellow Publishers Limited, Oxford, UKGoogle Scholar
  44. Newsome D, Johnson CP (2013) Potential geotourism and the prospect of raising awareness about geoheritage and environment on Mauritius. Geoheritage 5(1):1–9CrossRefGoogle Scholar
  45. Ortega JA, García-Ruiz JM (2010) (in spanish) Ríos en roca en los Pirineos. In: Patrimonio Geológico. Los ríos en roca de la Península Ibérica. Ortega J.A, Durán J.J (Eds) IGME, pp211–248Google Scholar
  46. Ortega JA, Wohl E, Livers B (2013) Waterfalls on the eastern side of Rocky Mountain National Park, Colorado, USA. Geomorphology 198:37–44CrossRefGoogle Scholar
  47. Ortega JA, Encinas A, Gaibar M, Martínez-Orozco J, Rodríguez I (2004) (in spanish) Propuestas para la conservación de cauces afectados por el barranquismo. Monografías CEDEX, Madrid, pp 431–448Google Scholar
  48. Ortega-Becerril JA, Jorge-Coronado A, Garzón G, Wohl E (2017) Sobrarbe Geopark: an example of highly diverse bedrock Rivers. Geoheritage 9(4):533–548CrossRefGoogle Scholar
  49. Ortega-Becerril JA, Garzón G, Tejero R (2018) Controls on strath terrace formation and evolution: the lower Guadiana River, Pulo do lobo, Portugal. Geomorphology 319:62–77CrossRefGoogle Scholar
  50. Ouimet WB, Whipple KX, Royden LH, Sun Z, Chen Z (2007) The influence of large landslides on river incision in a transient landscape: eastern margin of the Tibetan Plateau (Sichuan, China). Geol Soc Am Bull 119(11–12):1462–1476CrossRefGoogle Scholar
  51. Plumb GA (1993) A scale for comparing the visual magnitude of waterfalls. Earth Sci Rev 34(4):261–270CrossRefGoogle Scholar
  52. Prendivoj SN (2018) Tailoring signs to engage two distinct types of geotourists to geological sites. Geosciences 8:329. CrossRefGoogle Scholar
  53. Phuong TH, Duong NT, Hai TQ, Van Dong B (2017) Evaluation of the geological heritage of the dray Nur and dray sap waterfalls in the central highlands of Vietnam. Geoheritage 9(1):49–57CrossRefGoogle Scholar
  54. Raadik J, Cottrell SP, Fredman P, Ritter P, Newman P (2010) Understanding recreational experience preferences: application at fulufjället national park, Sweden. Scand J Hosp Tour 10(3):231–247CrossRefGoogle Scholar
  55. Robador A, Samsó JM, Pujalte V, Oliva B, Gil I, Soto R, Payros A, Rosales I, Tosquella J (2010) (in spanish) Cartografía geológica a escala 1:25000 del Parque Nacional de Ordesa y Monte Perdido y su aplicación a la gestión e interpretación del medio natural del Parque Nacional. In: Ramírez L. and Asensio B (eds.) Proyectos de Investigación en Parques Nacionales 2006–2009. Organismo Autónomo de Parques Nacionales, 7–28Google Scholar
  56. Robador A, Samsó JM, Carcavilla L (2013) (in spanish) Parque Nacional de Ordesa y Monte Perdido: Guía Geológica. In: Rodríguez Fernández, L.R. y Robador Moreno, A. (Coord.). Guías Geológicas de Parques Nacionales. IGME-OAPN. Ed. Everest, pp 214Google Scholar
  57. Sancho C, Arenas C, Pardo G, Peña-Monné JL, Rhodes EJ, Bartolomé M, García-Ruiz JM, Martí-Bono C (2018) Glaciolacustrine deposits formed in an ice-dammed tributary valley in the south-central Pyrenees: new evidence for late Pleistocene climate. Sediment Geol 366:47–66CrossRefGoogle Scholar
  58. Sklar LS, Stock JD, Roering JJ, Kirchner JW, Dietrich WE, Chi W, Chen M (2005) Evolution of fault scarp knickpoints following 1999 Chi-Chi earthquake in West-Central Taiwan. In: AGU fall meeting abstractsGoogle Scholar
  59. Scheingross JS, Lamb MP (2017) A mechanistic model of waterfall plunge pool erosion into bedrock. J Geophys Res 122(11):2079–2104CrossRefGoogle Scholar
  60. Schwarzbach M (1967) Islandische Wasserfälle und eine genetische systematik der wasserfälle überhaupt. Z Geomorphol 11(4):377–417Google Scholar
  61. Tongkul F (2016) Waterfalls of Maliau Basin—Geoheritage of Sabah, Malaysian Borneo. Geoheritage 8(3):235–245CrossRefGoogle Scholar
  62. Von Engeln OD (1940) A particular case of knickpunkte. Ann Assoc Am Geogr 30(4):268–271CrossRefGoogle Scholar
  63. Wang Z, Cui P, Yu GA, Zhang K (2012) Stability of landslide dams and development of knickpoints. Environ Earth Sci 65(4):1067–1080CrossRefGoogle Scholar
  64. Whittaker AC, Boulton SJ (2012) Tectonic and climatic controls on knickpoint retreat rates and landscape response times. Journal of Geophysical Research: Earth Surface 117(F2)Google Scholar
  65. Whipple KX, Snyder NP, Dollenmayer K (2000) Rates and processes of bedrock incision by the Upper Ukak River since the 1912 Novarupta ash flow in the Valley of Ten Thousand Smokes, Alaska. Geology 28(9):835–838CrossRefGoogle Scholar
  66. Young RW (1985) Waterfalls: form and process. Z Geomorphol 55:81–95Google Scholar

Copyright information

© The European Association for Conservation of the Geological Heritage 2019

Authors and Affiliations

  1. 1.Departamento de Geología y GeoquímicaUniversidad Autónoma de MadridMadridSpain
  2. 2.Sobrarbe-Pirineos UNESCO Global GeoparkBoltañaSpain

Personalised recommendations