Advertisement

Geoheritage

, Volume 11, Issue 3, pp 821–837 | Cite as

Natural Laboratories for Field Observation About Genesis and Landscape Effects of Palaeo-Earthquakes: a Proposal for the Rocca Busambra and Monte Barracù Geosites (West Sicily)

  • Luca BasiloneEmail author
  • Alessandro Bonfardeci
  • Pierangelo Romano
  • Attilio Sulli
Original Article

Abstract

Earthquakes are phenomena that are still being learned by the scientific community, and poorly known, especially as regards the prevention, by the population. Having a more complete knowledge is a basic step in understanding the vastness and intensity of the destructive phenomenon that involves a great amount of people. The recent earthquakes occurred in Central Italy (L’Aquila and Amatrice earthquakes) are examples that demonstrate the importance of having knowledge about these phenomena to contrast their destructive effects. We present a geological field trip to recognise causes and landscape effects of palaeo-earthquakes recorded in the Mesozoic rock successions outcropping in Sicily. The isolated carbonate reliefs of Rocca Busambra and Monte Barracù (Sicani Mountains) are spectacular sites of a passive continental margin where synsedimentary tectonic features—as palaeo-faults, neptunian dykes, morphostructural scarps, submarine landslide and soft sedimentary deformation structures—document earthquake causes and effects. Field evidence show in detail as the several palaeo-faults mapped in the Rocca Busambra stepped margin triggered the soft-sediment deformation structures recorded in the coeval deep-water rock succession of the Monte Barracù. In this view, the proposed field trip can represent a powerful tool to enhance the naturalistic and geological importance of the study areas by establishing geosites and protected areas for a proper fruition of geological-natural heritage and/or for geoconservation. Thus, through the proposed field trip it is possible to observe palaeo-earthquakes activity and landscape products, having an educational training purpose also for public administrators, whose rapid and skilled action is necessary for the prevention and reduction of the geohazard.

Keywords

Geotourism Geoconservation Earthquake Synsedimentary faults Seismogenic slumps Field trip 

Notes

Acknowledgments

We are grateful to an anonymous reviewer and to the Editor Kevin Page for the useful comments to the manuscript.

Funding

Funding for research was provided by CARG (F_607 Corleone fondi della Legge 438/95 finanziamenti ‘96, F_608 Caccamo fondi della Legge 67/88).

References

  1. Agate M, Basilone L, Catalano R, Franchino A, Merlini S, Sulli A (1998) Monte Barracù: Deformazione interna delle Unità Sicane nell’area tra Corleone e Monte Colomba. In: Catalano R, Lo Cicero G (eds.), La Sicilia, un laboratorio naturale nel Mediterraneo. Strutture, Mari, Risorse e Rischi. Guida alle Escursioni del 79° Congresso Nazionale della Società Geologica Italiana – La Sicilia Occidentale, 1:79–88. Mondello (Palermo, Italia), 21–23 settembre 1998Google Scholar
  2. Agate M, Basilone L, Di Maggio C, Contino A, Pierini S, Catalano R (2017) Quaternary marine and continental unconformity-bounded stratigraphic units of the NW Sicily coastal belt. J Maps 13(2):425–437.  https://doi.org/10.1080/17445647.2017.1314229 CrossRefGoogle Scholar
  3. Agnesi V, Macaluso T, Monteleone S, Pipitone G (1978) Espansioni laterali (lateral spreads) nella Sicilia Occidentale. Geol Appl Idrogeol 13:319–326Google Scholar
  4. Agnesi V, Camarda M, Conoscenti C, Di Maggio C, Serena Diliberto I, Madonia P, Rotigliano E (2005) A multidisciplinary approach to the evaluation of the mechanism that triggered the Cerda landslide (Sicily, Italy). Geomorphology 65:101–116.  https://doi.org/10.1016/j.geomorph.2004.08.003 CrossRefGoogle Scholar
  5. Allen JRL (1986) Earthquake magnitude-frequency, epicentral distance, and soft-sediment deformation in sedimentary basins. Sediment Geol 46(1–2):67–75.  https://doi.org/10.1016/0037-0738(86)90006-0 CrossRefGoogle Scholar
  6. Alsop GI, Marco S, Weinberger R, Levi T (2016) Sedimentary and structural controls on seismogenic slumping within mass transport deposits from the Dead Sea Basin. Sediment Geol 344:71–90.  https://doi.org/10.1016/j.sedgeo.2016.02.019 CrossRefGoogle Scholar
  7. Alsop GI, Marco S, Levi T, Weinberger R (2017) Fold and thrust systems in Mass Transport Deposits. J Struct Geol 94:98–115.  https://doi.org/10.1016/j.jsg.2016.11.008 CrossRefGoogle Scholar
  8. Amodio Morelli L, Bonardi G, Colonna V, Dietrich D, Giunta G, Ippolito F, Liguori V, Lorenzoni S, Paglionico A, Perrone V, Piccarreta G, Russo M, Scandone P, Zanettin Lorenzoni E, Zuppetta A (1976) L’arco Calabro-Peloritano nell’orogene Appenninico-Maghrebide. Mem Soc Geol Ital 17:1–60Google Scholar
  9. Arkell WJ (1956) Jurassic geology of the world. Oliver & Boyd, EdinburghGoogle Scholar
  10. Basilone L (2009) Mesozoic tectono-sedimentary evolution of the Rocca Busambra (western Sicily). Facies 55:115–135.  https://doi.org/10.1007/s10347-008-0156-2 CrossRefGoogle Scholar
  11. Basilone L (2011) Geological map of the Rocca Busambra-Corleone region (western Sicily, Italy): explanatory notes. Ital J Geosci (Boll Soc Geol It) 130:42–60.  https://doi.org/10.3301/IJG.2010.17 Google Scholar
  12. Basilone L (2017) Seismogenic rotational slumps and translational glides in pelagic deep-water carbonates. Upper Tithonian-Berriasian of southern Tethyan margin (W Sicily, Italy). Sediment Geol 356:1–14.  https://doi.org/10.1016/j.sedgeo.2017.04.009 CrossRefGoogle Scholar
  13. Basilone L (2018) Lithostratigraphy of Sicily. Cham, Springer International Publishing, (2018), 1–350  https://doi.org/10.1007/978-3-319-73942-7
  14. Basilone L, Di Maggio C (2016) Geology of Monte Gallo (Palermo Mts, NW Sicily). J Map 12(5):1072–1083.  https://doi.org/10.1080/17445647.2015.1124716 CrossRefGoogle Scholar
  15. Basilone L, Sulli A (2016) A facies distribution model controlled by a tectonically inherited sea bottom topography in the carbonate rimmed shelf of the upper Tithonian-Valanginian southern Tethyan continental margin (NW Sicily, Italy). Sediment Geol 342:91–105.  https://doi.org/10.1016/j.sedgeo.2016.06.013 CrossRefGoogle Scholar
  16. Basilone L, Sulli A (2018) Basin analysis in the Southern Tethyan margin: Facies sequences, stratal pattern and subsidence history highlight extension-to-inversion processes in the Cretaceous Panormide carbonate platform (NW Sicily). Sediment Geol 363:235–251.  https://doi.org/10.1016/j.sedgeo.2017.11.013 CrossRefGoogle Scholar
  17. Basilone L, Lena G, Gasparo-Morticelli M (2014) Synsedimentary tectonic, soft-sediment deformation and volcanism in the rifted Tethyan margin from the upper Triassic-middle Jurassic deep-water carbonates in Central Sicily. Sediment Geol 308:63–79.  https://doi.org/10.1016/j.sedgeo.2014.05.002 CrossRefGoogle Scholar
  18. Basilone L, Sulli A, Gasparo Morticelli M (2016a) The relationships between soft-sediment deformation structures and synsedimentary extensional tectonics in upper Triassic deep-water carbonate succession (southern Tethyan rifted continental margin - Central Sicily). Sediment Geol 344:310–322.  https://doi.org/10.1016/j.sedgeo.2016.01.010 CrossRefGoogle Scholar
  19. Basilone L, Frixa A, Trincianti E, Valenti V (2016b) Permian-Cenozoic deep-water carbonate rocks of the southern Tethyan domain. The case of Central Sicily. Ital J Geosci (Boll Soc Geol It) 135:171–198.  https://doi.org/10.3301/IJG.2015.07 Google Scholar
  20. Bergerat FO, Collin P-Y, Ganzhorn A-C, Baudin F, Galbrun B, Rouget I, Schnyder J (2011) Instability structures, synsedimentary faults and turbidites, witnesses of a Liassic seismotectonic activity in the Dauphiné Zone (French Alps): A case example in the Lower Pliensbachian at Saint-Michel-en-Beaumont. J Geodyn 51(5):344–357.  https://doi.org/10.1016/j.jog.2010.10.003 CrossRefGoogle Scholar
  21. Bertok C, Martire L (2009) Sedimentation, fracturing and sliding on a pelagic plateau margin: the middle Jurassic to lower cretaceous succession of Rocca Busambra (Western Sicily, Italy). Sedimentology 56:1016–1040CrossRefGoogle Scholar
  22. Bigi G, Cosentino D, Parotto M, Sartori R, Scandone P (1990) Structural Model of Italy: Geodinamic Project: Consiglio Nazionale delle Ricerche, S.EL.CA, scale 1:500,000Google Scholar
  23. Bolt BA (1993) Earthquakes. W.H. Freeman and Company, New York, 1993, 331 p.Google Scholar
  24. Booth J, Silva A, Jordan S (1984) Slope-stability analysis and creep susceptibility of quaternary sediments on the northeastern United States continental slope. In: Denness B (ed) Seabed mechanics. Springer, Netherlands, pp 65–75CrossRefGoogle Scholar
  25. Broquet P (1968) Étude géologique de la région des Madonies (Sicile). Phd Thèse, Fac Sc Lille, 797 ppGoogle Scholar
  26. Broquet P, Duee G, Mascle G, Truillet R (1984) Evolution Structurale alpine récente de la Sicile et sa signification géodynamique. Rev Géol Dynam Géog Phys 25(2):75–85Google Scholar
  27. Bourrouilh R (1998) Synsedimentary tectonics, mud-mounds and sea-level changes on a Palaeozoic carbonate platform margin: a Devonian Montagne noire example (France). Sediment Geol 118:95–118CrossRefGoogle Scholar
  28. Catalano R, Franchino A, Merlini S, Sulli A, Agate M, Basilone L (1998) Materiali per la Comprensione dell’Assetto Profondo della Sicilia Centro-Occidentale. In: Catalano R, Lo Cicero G (Eds.) Guida alle escursioni. La Sicilia occidentale vol I: 175-185, 79° Congresso della Soc Geol It, PalermoGoogle Scholar
  29. Catalano R, Franchino A, Merlini S, Sulli A (2000) A crustal section from North Algeria to the Ionian Ocean (Central Mediterranean). Mem Soc Geol Ital 55:71–85Google Scholar
  30. Catalano R, Gatti V, Avellone G, Basilone L, Frixa A, Ruspi R, Sulli A (2008) Subsurface geometries in Central Sicily FTB as a premise for hydrocarbon exploration. 70th European Association of Geoscientists and Engineers Conference and exhibition 2008: leveraging technology. Incorporating SPE EUROPEC 2008(1):69–73 ISBN: 978-160560474-9Google Scholar
  31. Catalano R, Avellone G, Basilone L, Sulli A (2010) Note illustrative della Carta Geologica d’Italia alla scala 1:50.000, foglio n. 607 “Corleone”, 240 pp. Istituto Superiore per la Protezione e la Ricerca Ambientale, Servizio Geologico d’Italia; Roma. ISBN 978-88-240-2972-8 http://www.isprambiente.gov.it/MEDIA/carg/607_CORLEONE/Foglio.html
  32. Catalano R, Avellone G, Basilone L, Gasparo-Morticelli M, Lo Cicero G (2011) Note illustrative della carta geologica d’Italia alla scala 1: 50.000 foglio 608 Caccamo. 224 pp. Istituto Superiore per la Protezione e la Ricerca Ambientale, Servizio Geologico d’Italia; Roma. ISBN 978-88-240-2973-5 http://www.isprambiente.gov.it/MEDIA/carg/608_CACCAMO/Foglio.html
  33. Davis GH, Reynolds SJ (1996) Structural geology. John Wiley & Sons, New YorkGoogle Scholar
  34. Di Maggio C, Agate M, Contino A, Basilone L, Catalano R (2009) Unconformity-bounded stratigraphic units of quaternary deposits mapped for the CARG project in northern and Western Sicily [Unità a limiti inconformi utilizzate per la cartografia Dei depositi quaternari nei fogli CARG della Sicilia Nord-occidentale]. Alpine Mediter Quat 22:345–364 (open access)Google Scholar
  35. Eder FW, Patzak M (2004) Geoparks-geological attractions: a tool for public education, recreation and sustainable economic development. Episodes 27(3):162–164Google Scholar
  36. Festa A, Dilek Y, Gawlick H-J, Missoni S (2014) Mass-transport deposits, olistostromes and soft-sediment deformation in modern and ancient continental margins, and associated natural hazards. Mar Geol 356:1–4.  https://doi.org/10.1016/j.margeo.2014.09.001 CrossRefGoogle Scholar
  37. Gamboa D, Alves T, Cartwright J, Terrinha P (2010) MTD distribution on a ‘passive’ continental margin: the Espirito Santo Basin (SE Brazil) during the Palaeogene. Mar Pet Geol 27:1311–1324.  https://doi.org/10.1016/j.marpetgeo.2010.05.008 CrossRefGoogle Scholar
  38. Garcìa-Rodriguez MJ, Malpica JA (2010) Assesment of earthquake-triggered landslide susceptibility in El Salvador based on an artificial neural network model. Nat Hazards Earth Syst Sci 10:1–9.  https://doi.org/10.5194/nhess-10-1-2010 CrossRefGoogle Scholar
  39. Garcia-Tortosa FJ, Alfaro P, Gibert L, Scott G (2011) Seismically induced slump on an extremely gentle slope (<1) of the Pleistocene Tecopa paleolake (California). Geology 39:1055–1058.  https://doi.org/10.1130/G32218.1 CrossRefGoogle Scholar
  40. Gasparo Morticelli M, Valenti V, Catalano R, Sulli A, Agate M, Avellone G, Albanese C, Basilone L, Gugliotta C (2015) Deep controls on foreland basin system evolution along the Sicilian fold and thrust belt. Bull Soc Geol Fr 186:273–290.  https://doi.org/10.2113/gssgfbull.186.4-5.273 CrossRefGoogle Scholar
  41. Gasparo Morticelli M, Avellone G, Sulli A, Agate M, Basilone L, Catalano R, Pierini S (2017) Mountain building in NW Sicily from the superimposition of subsequent thrusting and folding events during Neogene: structural setting and tectonic evolution of the Kumeta and Pizzuta ridges. J Maps 13:276–290.  https://doi.org/10.1080/17445647.2017.1300546 CrossRefGoogle Scholar
  42. Gemmellaro GG (1878) Sui fossili del calcare cristallino delle Montagne del Casale e di Bellolampo nella Provincia di Palermo, pp. 1872–1882 PalermoGoogle Scholar
  43. Giunta G, Liguori V (1975) Considerazioni sul significato ambientale e sul ruolo paleotettonico della Rocca Busambra (Sicilia). Boll Soc Nat Napoli 84:45–49Google Scholar
  44. Grandjacquet C, Mascle G (1978) The structure of the Ionian Sea, Sicily, and Calabria-Lucania. In: Nairn AEM, Kanes WH, Stehli FG (eds) The ocean basins and margins. Springer, Boston, pp 257–329.  https://doi.org/10.1007/978-1-4684-3039-4_5 CrossRefGoogle Scholar
  45. Gugenberger O (1936) I cefalopodi del Lias Inferiore della Montagna del Casale in provincia di Palermo (Sicilia). Palaeontogr Ital 37:135–213Google Scholar
  46. Kastens K, Mascle J, Auroux C, Bonatti E, Broglia C, Channell J, Curzi P, Emeis KC, Glacon G, Hasegawa S, Hieke W, Mascle G, Mccoy F, Mckenzie J, Mendelson J, Muller C, Rehault JP, Robertson A, Sartori R, Sprovie (1988) ODP Leg 107 in the Tyrrhenian sea: insight into passive margin and back-arc basin evolution. GSA Bull 100:1140–1156 Google Scholar
  47. Keefer DK (2002) Investigating landslides caused by earthquakes–a historical review. Surv Geophys 23:473–510CrossRefGoogle Scholar
  48. Kopf AJ, Stegmann S, Garziglia S, Henry P, Dennielou B, Haas S, Weber K-C (2016) Soft sediment deformation in the shallow submarine slope off Nice (France) as a result of a variably charged Pliocene aquifer and mass wasting processes. Sediment Geol 344:290–309.  https://doi.org/10.1016/j.sedgeo.2016.05.014 CrossRefGoogle Scholar
  49. Leeder MR (1987) Sediment deformation structures and the palaeotectonic analysis of sedimentary basins, with a case-study from the carboniferous of northern England. In: Jones ME, Preston RMF (eds) Deformation of Sediments and Sedimentary Rocks: Journal of the Geological Society of London, Special Publication 29, pp 137–146Google Scholar
  50. Leeder MR (2010) Sedimentology and sedimentary basins. From Turbulence to Tectonics, Wiley-BlackwellGoogle Scholar
  51. Lowe DR (1976) Subaqueous liquefied and fluidized sediment flows and their deposits. Sedimentology 23:285–308CrossRefGoogle Scholar
  52. Lunina O, Gladkov AS (2016) Soft-sediment deformation structures induced by strong earthquakes in southern Siberia and their paleoseismic significance. Sediment Geol 344:5–19.  https://doi.org/10.1016/j.sedgeo.2016.02.014 CrossRefGoogle Scholar
  53. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslides, earthquackes, and erosion. Earth Planet Sci Lett 229:45–59CrossRefGoogle Scholar
  54. Malinverno A, Ryan WBF (1986) Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5(2):227–245Google Scholar
  55. Mallarino G, Goldstein RH, Di Stefano P (2002) New approach for quantifying water depth applied to the enigma of drowning of carbonate platforms. Geology 30:783–786.  https://doi.org/10.1130/0091-7613(2002)030<0783:NAFQWD>2.0.CO;2 CrossRefGoogle Scholar
  56. Maltman AJ (1984) On the term ‘soft-sediment deformation’. J Struct Geol 6:589–592CrossRefGoogle Scholar
  57. Martinez JF, Cartwright J, Hall B (2005) 3D seismic interpretation of slump complexes: examples from the continental margin of Israel. Basin Res 17:83–108CrossRefGoogle Scholar
  58. Martinsen OJ (1994) Mass movements. In: Maltman A (ed) The geological deformation of sediments. Chapman & Hall, London, pp 127–165CrossRefGoogle Scholar
  59. Martinsen OJ, Bakken B (1990) Extensional and compressional zones in slumps and slides in the Namurian of county Claire, Eire. J Geol Soc Lond 147:153–164CrossRefGoogle Scholar
  60. Martire L, Montagnino D (2002) Stop 10 Rocca Argenteria: a complex network of Jurassic to Miocene neptunian dykes. In: Santantonio M (ed) 6th international symposium on the Jurassic system. General Field Trip Guidebook, Palermo, pp 87–91Google Scholar
  61. Mascle G (1964) Les couches des passages du Jurassique au Cretaceé de la serie de Sciacca (monts Sicani, Sicile). C.R.S.S. Soc Geol Fr 199–200 (Paris)Google Scholar
  62. Mascle G (1970) Geological sketch of western Sicily. In Alvarez W (ed) Geology and history of Sicily. Petroleum Exploration Society of Lybia, Excursion in Sicily, pp 47–60Google Scholar
  63. Mascle G (1973) Geologie sur la structure de Rocca Busambra (Sicile occidentale): mise en èvidence d'une tectonique antècènomanienne. CR Acad Sci Paris 276:265–267Google Scholar
  64. Mascle G (1979) Etude géologique des Monts Sicani. Riv Ital Paleontol Stratigr 16:1–430Google Scholar
  65. Mascle G (2008) Les roches, mémoire du temps. EDP Sciences, 287 pp. ISBN: 978-2-7598-0044-5Google Scholar
  66. Mastalerz K, Wojewoda J (1993) Alluvial-fan sedimentation along an active strike-slip fault: Plio-Pleistocene pre-Kaczawa fan, SW Poland. In: Marzo M, Puigdefabregas C. (Eds.) Alluvial Sedimentation. IAS Spec Publ 17:293–304Google Scholar
  67. Mastrogiacomo G, Moretti M, Owen G, Spalluto L (2012) Tectonic triggering of slump sheets in the upper cretaceous carbonate succession of the Porto Selvaggio area (Salento peninsula, southern Italy): Synsedimentary tectonics in the Apulian carbonate platform. Sediment Geol 269-270:15–27.  https://doi.org/10.1016/j.sedgeo.2012.05.001 CrossRefGoogle Scholar
  68. Miall AD (2016) The valuation of unconformities. Earth Sci Rev 163:22–71.  https://doi.org/10.1016/j.earscirev.2016.09.011 CrossRefGoogle Scholar
  69. Moczo P, Kristek J, Gális M (2014) The finite-difference modelling of earthquake motions: waves and ruptures. Cambridge University Press (2014), pp 1–383, ISBN:9781139236911,  https://doi.org/10.1017/CBO9781139236911
  70. Monaco C, Tortorici L, Catalano S (2000) Tectonic escape in the Sicanian mountains (western Sicily). Mem Soc Geol Ital 55:17–25Google Scholar
  71. Moretti M, Alfaro P, Owen G (2016) The environmental significance of soft-sediment deformation structures: key signatures for sedimentary and tectonic processes. Sedim Geol 344:1–4.  https://doi.org/10.1016/j.sedgeo.2016.10.002 CrossRefGoogle Scholar
  72. Nishimura T (2017) Triggering of volcanic eruptions by large earthquakes. Geophys Res Lett 44:7750–7756.  https://doi.org/10.1002/2017GL074579 CrossRefGoogle Scholar
  73. Obermeier SF (1996) Using liquefaction-induced features for paleoseismic analysis. In: McCalpin JP (Ed.), Paleoseismology. International Geophysical Research 62:331–396Google Scholar
  74. Ogniben L (1960) Note illustrative dello schema geologico della Sicilia Nord-Orientale. Rivista Mineraria Siciliana 64-65:183–212 PalermoGoogle Scholar
  75. Oldow JS, Channell JET, Catalano R, D'Argenio B (1990) Contemporaneous thrusting and large-scale rotations in the Western Sicilian fold and thrust belt. Tectonics 9:661–681CrossRefGoogle Scholar
  76. Ortner H (2007) Styles of soft-sediment deformation on top of a growing fold system in the Gosau Group at Muttekopf, northern calcareous Alps, Austria: slumping versus tectonic deformation. Sediment Geol 196:99–118CrossRefGoogle Scholar
  77. Ortner H, Kilian S (2016) Sediment creep on slopes in pelagic limestone: upper Jurassic of northern calcareous Alps, Austria. Sediment Geol 344:350–363.  https://doi.org/10.1016/j.sedgeo.2016.03.013 CrossRefGoogle Scholar
  78. Owen G, Moretti M (2011) Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sediment Geol 235:141–147CrossRefGoogle Scholar
  79. Owen G, Moretti M, Alfaro P (2011) Recognising triggers for soft-sediment deformation: current understanding and future directions. Sediment Geol 235:133–140CrossRefGoogle Scholar
  80. Paparo AM, Armigliato A, Pagnoni G, Zaniboni F, Tinti S (2017) Earthquake-triggered landslides along the Hyblean-Malta escarpment (off Augusta, eastern Sicily, Italy) - assessment of the related tsunamigenic potential. Adv Geosci 44:1–8.  https://doi.org/10.5194/adgeo-44-1-2017 CrossRefGoogle Scholar
  81. Posamentier H, Martinsen OJ (2011) The character and genesis of submarine mass-transport deposits: insights from outcrop and 3D seismic data, in: Shipp C, Weimer P, Posamentier H (Eds.), mass-transport deposits in Deepwater settings. SEPM Spec Publ 96:7–38Google Scholar
  82. ProGEO (2011) Conserving our shared geoheritage – a protocol on geoconservation principles, sustainable site use, management, fieldwork, fossil and mineral collecting. http://www.progeo.se/progeoprotocol-definitions-20110915.pdf (13 October 2015)
  83. Roure F, Howell DG, Muller C, Moretti I (1990) Late Cenozoic subduction complex of Sicily. J Struct Geol 12(2):259–266CrossRefGoogle Scholar
  84. Santantonio M (1993) Facies associations and evolution of pelagic carbonate platform/basin systems: examples from the Italian Jurassic. Sedimentology 40:1039–1067.  https://doi.org/10.1111/j.1365-3091.1993.tb01379.x CrossRefGoogle Scholar
  85. Seilacher A (1969) Fault-graded beds interpreted as seismites. Sedimentology 13:155–159CrossRefGoogle Scholar
  86. Seth A, Sarkar S, Bose PK (1990) Synsedimentary seismic activity in an immature passive margin basin (lower member of the Katrol formation, upper Jurassic, Kutch, India). Sediment Geol 68:279–291CrossRefGoogle Scholar
  87. Shillington DJ, Seeber L, Sorlien CC, Steckler MS, Kurt H, Dondurur D, Çifçi G, İmren C, Cormier M-H, McHugh CMG, Gürçay S, Poyraz D, Okay S, Atgın O, Diebold JB (2012) Evidence for widespread creep on the flanks of the sea of Marmara transform basin from marine geophysical data. Geology 40(5):439–442CrossRefGoogle Scholar
  88. Silva AJ, Booth JS (1984) Creep behaviour of submarine sediments. Geo-Mar Lett 4(3–4):215–219CrossRefGoogle Scholar
  89. Sims JD (1975) Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics 29:141–152CrossRefGoogle Scholar
  90. Strachan JS, Alsop GI (2006) Slump folds as estimators of palaeoslope: a case study from the Fisherstreet slump of county Clare, Ireland. Basin Res 18:451–470CrossRefGoogle Scholar
  91. Strasser A, Heitzmann P, Jordan P, Stapfer A, Stürm B Vogel A, Weidmann M (1995) Géo-topes et la protection des objets géologiques en Suisse: un rapport stratégique – Fribourg: Groupe suisse pour la protection des géotopes. 27pGoogle Scholar
  92. Strasser M, Moore GF, Kimura G, Kopf AJ, Underwood MB, Guo J, Screaton EJ (2011) Slumping and mass transport deposition in the Nankai fore arc: evidence from IODP drilling and 3-D reflection seismic data. Geochemistry, Geophysics, Geosystems 12(5):Q0AD13.  https://doi.org/10.1029/2010GC003431 CrossRefGoogle Scholar
  93. Truillet R (1966) Existence de filons sédimentaires homogènes et granoclassés dans les environs de Taormina (monts Peloritains-Sicile). C R Som Soc Geol France 9:354–359 ParisGoogle Scholar
  94. Üner S, Alırız MG, Özsayın E, Selçuk AS, Karabıyıkoğlu M (2017) Earthquake induced sedimentary structures (Seismites): Geoconservation and promotion as geological heritage (Lake Van-Turkey). Geoheritage 9:133–139.  https://doi.org/10.1007/s12371-016-0186-z CrossRefGoogle Scholar
  95. Vai GB, Martini P (2001) Anatomy of an orogen: the Apennines and adjacent Mediterranean basins. Blackwell Academic Publisher (2001), pp 1–433Google Scholar
  96. Van Loon AJT, Pisarska-Jamroży M (2014) Sedimentological evidence of Pleistocene earthquakes in NW Poland induced by glacio-isostatic rebound. Sediment Geol 300:1–10.  https://doi.org/10.1016/j.sedgeo.2013.11.006 CrossRefGoogle Scholar
  97. Walter TR, Amelung F (2007) Volcanic eruptions following M ≥ 9 megathrust earthquakes: implications for the Sumatra-Andaman volcanoes. Geology 35:539–542.  https://doi.org/10.1130/G23429A CrossRefGoogle Scholar
  98. Wendt J (1965) Synsedimentäire Bruchtektonik im Jura Westsiziliens. N Jb Geol Paläontol Mh 5:286–311Google Scholar
  99. Wendt J (2017) A unique fossil record from neptunian sills: the world's most extreme example of stratigraphic condensation (Jurassic, western Sicily). Acta Geol Pol 67:163–199.  https://doi.org/10.1515/agp-2017-0015 CrossRefGoogle Scholar
  100. Wimbledon WAP (1997) Geosites – a new conservation initiative. Episodes 19:87–88Google Scholar

Copyright information

© The European Association for Conservation of the Geological Heritage 2018

Authors and Affiliations

  1. 1.Liceo Statale C. ReboraRhoItaly
  2. 2.Department of Earth and Marine ScienceUniversity of PalermoPalermoItaly

Personalised recommendations