pp 1–12 | Cite as

A Crucial Site in the Argument Between Neptunists and Plutonists: Reopening of the Historical Adit in the Komorní hůrka (Kammerbühl) Volcano After 180 Years

  • Vladislav RapprichEmail author
  • Jan Valenta
  • Milan Brož
  • Eva Kadlecová
  • Benjamin van Wyk de Vries
  • Michael S. Petronis
  • Petr Rojík
Original Article


A small, inconspicuous scoria cone in western Bohemia, known as Komorní hůrka Hill, played a crucial role during the controversy between Plutonists and Neptunists over the origin of rocks in the first half of the nineteenth century. The year 2017 represents the 180th anniversary of one successful resolution of this debate: at the instigation of J.W. Goethe, adits were dug into this volcano to access its feeding system in order to observe whether volcanoes were fed by burning coal seams, or feeder dikes of magma. The adits into Komorní hůrka Hill were the first large earth-works with a solely scientific goal and with no commercial mining purposes. The basaltic feeder exposed in the adits decided definitively in favour of the Plutonists after decades of ongoing arguments with the Neptunists. Here, we summarize the overall history of this small volcano. A recently conducted ground geophysical survey confirmed the position of historical adits, marked on several archive sketches. The geophysical data, comprising ground magnetometry, electric resistivity tomography and refraction seismic profiles, also revealed the internal structure of the volcano, including the position of the feeder dike and the geometry of a lava flow emitted from the crater. With the position of these historical adits confirmed by geophysical survey, excavations can safely reopen these historical earth-works and provide access to a wider public. Komorní hůrka could then serve as an educational geosite to exhibit the structure of a small monogenetic volcano, as well as illustrating a stage in the history of Earth Sciences.


Geoheritage Neptunists Plutonists Komorní hůrka volcano Ground geophysics 



The project of Re-opening of the historical adits in Komorní hůrka Volcano is supported by the programme of Regional Cooperation between the Regions and the Institutes of the Czech Academy of Sciences in (grant R100121621). This contribution has been prepared with additional support from the Czech Geological Survey (to Rapprich and Kadlecová) and by New Mexico Highlands University Faculty Research funds (to Petronis). The quality of the manuscript benefited from constructive comments by an anonymous reviewer and Károly Németh, as well as from recommendations by handling editor Kevin Page. Special thanks are addressed to Francis van Wyk de Vries for careful language editing.


  1. Agricola G (1558) Bermannus, siue De re metallica dialogus, lib. I.; De ueteribus & nouis metallis, lib. II; De natura eorum quæ effluunt ex terra, lib. IIII; De ortu & causis subterraneorum, lib. V; De natura fossilium, lib. X.–Officina Frobeniana. Basileae.
  2. Albrecht H (2016) Die Bergakademie Freiberg. Eine Hochschulgeschichte im Spiegel ihrer Jubiläen 1765 bis 2015. - Mitteldeutscher Verlag, 1–336, ISBN-13: 9783954625468Google Scholar
  3. Bankwitz P, Schneider G, Kämpf H, Bankwitz E (2003) Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic). J Geodyn 35:5–32CrossRefGoogle Scholar
  4. Barrow G (1912) On the geology of Lower Dee-side and the southern Highland Border. Proc Geol Assoc 23:1–290Google Scholar
  5. Berzelius JJ (1823) Untersuchungen des Mineralwassers von Karlsbad, Teplitz ind Königswart in Böhmen. Gilbert’s Annalen Physik 74:1–194 LeipzigCrossRefGoogle Scholar
  6. Blaikie TN, Ailleres L, Betts PG, Cas RAF (2014) Interpreting subsurface volcanic structures using geologically constrained 3-D gravity inversions: examples of maar-diatremes, Newer Volcanics Province, southeastern Australia. J Geophys Res: Solid Earth 119(4):3857–3878. CrossRefGoogle Scholar
  7. Boivin P, Besson JC, Briot D, Camus G, De Goër de Hervé A, Gourgaud A, Labazuy P, Langlois E, de Larouzière FD, Livet M, Mergoil J, Miallier D, Morel JM, Vernet G, Vincent PM (2009) Volcanologie de la Chaîne des Puys Massif Central Français. – 5th Edition, scale 1:25 000, 1 sheetGoogle Scholar
  8. Bowden AJ, Burek CV, Wilding R (eds) (2005) History of palaeobotany: selected essays. – Geological Society, London, Special Publications 241, 304 pp.Google Scholar
  9. Brenguier F, Coutant O, Baudon H, Dore F, Dietrich M (2006) High resolution seismic tomography of a Strombolian volcanic cone. Geophys Res Lett 33:L16314. CrossRefGoogle Scholar
  10. Brocx M, Semeniuk V (2007) Geoheritage and conservation: history, definition, scope and scale. J R Soc West Aust 90:53–87Google Scholar
  11. Cas RAF, Wright JV (1987) Volcanic successions, modern and ancient: a geological approach to processes, products and successions. – Allen and Unwin, Winchester, Massachusetts, 528 pp.Google Scholar
  12. Chlupáč I, Vacek F (2002) Thirty years of the first international stratotype: the Silurian-Devonian boundary at Klonk and its present status. Episodes 26:10–15Google Scholar
  13. Desmarest N (1774) Mémoire sur l’origine et la nature du basalte à grandes colonnes polygones, déterminées par l’histoire naturelle de cette pierre, observée en Auvergne. – Histoire et mémoires de l’Académie Royale des Sciences, Année 1771, Paris, pp 705–775Google Scholar
  14. Fischer T, Horálek J, Hrubcová P, Vavryčuk V, Bräuer K, Kämpf H (2014) Intra-continental earthquake swarms in west-bohemia and Vogtland: a review. Tectonophysics 611:1–27CrossRefGoogle Scholar
  15. Friese N, Bense FA, Tanner DC, Gustafsson LE, Siegesmund S (2013) From feeder dykes to scoria cones: the tectonically controlled plumbing system of the Rauoholar volcanic chain, Northern Volcanic Zone, Iceland. Bull Volcanol 75:717CrossRefGoogle Scholar
  16. Frisch SG (1825) Lebensbeschreibung A. G. Werners - nebst zwei Abhandlungen über Werners Verdienste um Oryktognosie und Geognosie Brockhaus Verlag, LeipzigGoogle Scholar
  17. Fuertes-Gutierrez I, Fernandez-Martinez E (2012) Mapping geosites for geoheritage management: a methodological proposal for the regional park of Picos de Europa (Leon, Spain). Environ Manag 50:789–806CrossRefGoogle Scholar
  18. Geissler WH, Kämpf H, Kind R, Bräuer K, Klinge K, Plenefisch T, Horálek J, Zedník J, Nehybka V (2005) Seismic structure and location of a CO2 source in the upper mantle of the western Eger (Ohře) Rift, central Europe. - Tectonics, 24:
  19. Geshi N, Oikawa T (2014) The spectrum of basaltic feeder systems from effusive lava eruption to explosive eruption at Miyakejima volcano, Japan. Bull Volcanol 76:797CrossRefGoogle Scholar
  20. Goethe JW (1786–1788) Italienische Reise.Google Scholar
  21. Goethe JW (1790) Versuch die Metamorphose der Pflanzen zu erklären. Ettingersche Buchhandlung, Gotha, pp 1–79CrossRefGoogle Scholar
  22. Goethe JW (1809) Der Kammerbühl bei Eger ein Vulcan. Taschenbuch für die gesammte Mineralogie 3-4(1-24):365–369 Frankfurt am Main (Johann Christian Hermann)Google Scholar
  23. Goethe JW (1810a) Zur Farbenlehre (theory of colours) Bd. II. Cotta, Tübingen 1810, 1–702Google Scholar
  24. Goethe JW (1810b) Zur Farbenlehre (theory of colours) Bd. II. Cotta, Tübingen 1810, 1–786Google Scholar
  25. Goethe JW (1822) Der Kammerbühl. - In Cotta E (ed.) Goethe’s Werken 30: 223–225Google Scholar
  26. Goldfuss GA, Bischof GC (1817) Physikalisch-statistische Beschreibung des Fichtelgebirges 2: 133–135 Nürnberg.Google Scholar
  27. Gottsmann J (1999) Tephra characteristics and eruption mechanism of the Komorní Hůrka Hill scoria cone, Cheb Basin, Czech Republic. Geolines 9:35–40Google Scholar
  28. Gottsmann J, Tobschall H (1997) Petrographic and geochemical studies on the Komorni Hurka scoria cone, Cheb basin, Czech Republic. J Czech Geol Soc (J Geosci) 42:54Google Scholar
  29. Gravis I, Németh K, Procter JN (2017) The role of cultural and indigenous values in geosite evaluations on a quaternary monogenetic volcanic landscape at Ihumātao, Auckland volcanic field New Zealand. Geoheritage 9:373–393CrossRefGoogle Scholar
  30. Guettard J-E (1752) Sur quelques montagnes de France qui ont été des volcans Mémoire de l'Académie Royale des Sciences de la FranceGoogle Scholar
  31. Guntau M (2009) The rise of geology as a science in Germany around 1800. Geol Soc Lond, Spec Publ 317:163–177CrossRefGoogle Scholar
  32. Günther T, Rücker C, Spitzer K (2006) Three-dimensional modelling and inversion of dc resistivity data incorporating topography – II. Inversion. Geophys J Int 166:506–517CrossRefGoogle Scholar
  33. Haase KM, Renno AD (2008) Variation of magma generation and mantle sources during continental rifting observed in Cenozoic lavas from the Eger Rift. Central Europe Chem Geol 257:192–202Google Scholar
  34. Harangi S, Molnár M, Vinkler AP, Kiss B, Jull AJT, Leonard AG (2010) Radiocarbon dating of the last volcanic eruptions of Ciomadul volcano, Southeast Carpathians, eastern-central Europe. Radiocarbon 52:1498–1507CrossRefGoogle Scholar
  35. Harangi S, Lukács R, Schmitt AK, Dunkl I, Molnár K, Kiss B, Seghedi I, Novothny Á, Molnár M (2015) Constraints on the timing of Quaternary volcanism and duration of magma residence at Ciomadul volcano, east–central Europe, from combined U–Th/He and U–Th zircon geochronology. J Volcanol Geothermal Res 301:66–80CrossRefGoogle Scholar
  36. Hartvich F, Valenta J (2011) The identification of faults using morphostructural and geophysical methods: a case study from Strašín cave site. Acta Geodyn. Geomater 8:425–441Google Scholar
  37. Henriques MH, dos Reis RP, Brilha J, Mota T (2011) Geoconservation as an emerging geoscience. Geoheritage 3:1–12CrossRefGoogle Scholar
  38. Hetier JM, Guillet B, Brousse R, Delibrias G, Maury RC (1983) 14-C dating of buried soils in the volcanic Chaine des Puys (France). Bull Volcanol 46:193–202CrossRefGoogle Scholar
  39. Hibsch JE (1924a) Erläutungen zur geologischen Karte der Umgebung von Bilin. – Knihovna Státního geologického ústavu Československé republiky 8, PrahaGoogle Scholar
  40. Hibsch JE (1924b) Erläutungen zur geologischen Karte der Umgebung von Brüx. – Knihovna Státního geologického ústavu Československé republiky 11, Praha.Google Scholar
  41. Hradecký P (1994) Volcanology of Železná and Komorní hůrka in Western Bohemia. Věst. Čes. Geol. Úst 69:89–92Google Scholar
  42. Hutton J. (1795) Theory of the earth with proofs and Illustrations. – Edinburgh: printed for messrs Cadell, junior, and Davies, and William Creech, 1795-1899. ETH-Bibliothek Zürich, Rar 3971,
  43. Jentzsch G, Korn M, Špičák A (2003) The swarm earthquakes in the area Vogtland/NW-Bohemia: interaction of tectonic stress and fluid migration in a magmatic environment. J Geodynamics 35:1–3CrossRefGoogle Scholar
  44. Kazancı N (2012) Geological background and three vulnerable geosites of the Kızılcahamam–Çamlıdere geopark project in Ankara, Turkey. Geoheritage 4:249–261CrossRefGoogle Scholar
  45. Knett J (1903) Mitteilungen der Erdbeben-Commision der Kiserlichen Akademie der Wisenschaften in Vien. Hof -und Staatsdruckerei, WienGoogle Scholar
  46. Kobell F (1853) Tafeln Bestimmt. – Alzad München, 46 pp.Google Scholar
  47. Král R, Králová M (1961) Petrochemistry of the West Bohemian basalts V. Komorní hůrka near Františkovy Lázně. - Sbor. Vys. šk. chem. technol. v Praze, Fortschr Mineral, 5: 163–172.Google Scholar
  48. Kvaček J, Kvaček Z (1992) Sternberg’s work Flora der Vorwelt, its significance and the state of the original collection. - Časopis Národního muzea v Praze. Řada přírodovědná 158:31–42Google Scholar
  49. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophys Prospect 44:131–152CrossRefGoogle Scholar
  50. Lustrino M, Wilson M (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth-Sci. Rev 81:1–65CrossRefGoogle Scholar
  51. Lutz H, Lorenz V (2013) Early volcanological research in the Vulkaneifel, Germany, the classic region of maar-diatreme volcanoes: the years 1774–1865. Bull Volcanol 75:743CrossRefGoogle Scholar
  52. Lyell J (1830) Principles of geology, vol 1, 1st edn. John Murray, LondonGoogle Scholar
  53. Martínez-Pagán P, Gómez-Ortiz D, Martín-Crespo T, Manteca JJ, Rosique M (2013) The electrical resistivity tomography method in the detection of shallow mining cavities. A case study on the Victoria Cave, Cartagena (SE Spain). Eng Geol 156:1–10CrossRefGoogle Scholar
  54. Martinsson A (ed) (1977) The Silurian-Devonian boundary. Final report of the Committee on the Silurian-Devonian Boundary within IUGS Commission on Stratigraphy and a state of the art report for Project Ecostratigraphy, International Union of Geological Sciences, series A, number, vol 5. Schweizerbartsche Verlag, Stuttgart, 349 ppGoogle Scholar
  55. Mertes H, Schmincke H-U (1983) Age distribution of volcanoes in the West-Eifel. Neues Jahrb Geol Palaont Monatsh 166:260–293Google Scholar
  56. Molina JI (1810) Saggio sulla historia civile del Chili. – Seconda Edizione, Bologna, 302 pp.Google Scholar
  57. Moufti MR, Németh K, Murcia H, Lindsay JM, El-Masry N (2013) Geosite of a steep lava spatter cone of the 1256 AD, Al Madinah eruption, Kingdom of Saudi Arabia. Cent Eur J Geosci 5:189–195Google Scholar
  58. Moufti MR, Németh K, El-Masry N, Qaddah A (2015) Volcanic geotopes and their geosites preserved in an arid climate related to landscape and climate changes since the neogene in Northern Saudi Arabia: Harrat Hutaymah (Hai’il Region). Geoheritage 7:103–118CrossRefGoogle Scholar
  59. Mrlina J, Kämpf H, Kroner C, Mingram J, Stebich M, Brauer A, Geissler WH, Kallmeyer J, Matthes H, Seidl M (2009) Discovery of the first Quaternary maar in the Bohemian Massif, Central Europe, based on combined geophysical and geological surveys. J Volcanol Geotherm Res 182:97–112CrossRefGoogle Scholar
  60. Németh K, Martin U (2007) Shallow sill and dyke complex in western Hungary as a possible feeding system of phreatomagmatic volcanoes in “soft-rock” environment. J Volcanol Geotherm Res 159:138–152CrossRefGoogle Scholar
  61. Palliardi AA (1863) Der Kammerbühl ein Vulkan bei Kaiser Franzensbad. 115 pp.Google Scholar
  62. Panizza M (2001) Geomorphosites: Concepts, methods and examples of geomorphological survey. Chin Sci Bull 46:4–6CrossRefGoogle Scholar
  63. Panizza M (2009) The geomorphodiversity of the dolomites (Italy): a key of geoheritage assessment. Geoheritage 1:33–42CrossRefGoogle Scholar
  64. Petronis MS, Delcamp A, van Wyk de Vries B (2013) Magma emplacement into the Lemptégy scoria cone (Chaîne Des Puys, France) explored with structural, anisotropy of magnetic susceptibility, and Paleomagnetic data. Bull Volcanol 75:753CrossRefGoogle Scholar
  65. Petronis MS, Brister AR, Rapprich V, van Wyk de Vries B, Lindline J, Mišurec J (2015) Emplacement history of the Trosky basanitic volcano (Czech Republic): paleomagnetic, rock magnetic, petrologic, and anisotropy of magnetic susceptibility evidence for lingering growth of a monogenetic volcano. J Geosci 60:129–147CrossRefGoogle Scholar
  66. Proft E (1894) Kammerbühl und Eisenbühl, die Schicht-Vulkane des Egerer beckens. Jahrb Geol Reichsanstalt 1:25–86Google Scholar
  67. Rajchl M, Uličný D, Grygar R, Mach K (2009) Evolution of basin architecture in an incipient continental rift: the Cenozoic Most Basin, Eger Graben (Central Europe). Basin Res 21:269–294CrossRefGoogle Scholar
  68. Rapprich V, Shields S, Halodová P, Lindline J, van Wyk de Vries B, Petronis MS, Valenta J (2017a) Fingerprints of magma mingling processes within the Miocene Zebín tuff cone feeding system (Jičín Volcanic Field, Czech Republic). J Geosci 62:215–229Google Scholar
  69. Rapprich V, Lisec M, Fiferna P, Závada P (2017b) Application of modern technologies in popularisation of the Czech Volcanic Geoheritage. Geoheritage 9:413–420CrossRefGoogle Scholar
  70. Reck H (1927) Zur Geologie der jüngsten Vulkane Böhmens des Kammerbühls und Eisenbühls bei Eger. – Zeitschrift für Vulkanologie BerlinGoogle Scholar
  71. Reuss FA (1790) Orographie der Nordwestlichen Mittelgebirges in Bohmen. Ein Beitrag zur Beantwortung der Frage: Ist der Basalt vulkanisch oder nicht?. – Walther, Dresden, 180 pp.Google Scholar
  72. Reuss FA (1793) Mineralogische Geographie von Böhmen. – Prag, 195 pp.Google Scholar
  73. Reuss FA (1794) Sammlung naturhistorischer Aufsätze mit vorzuglicher Hinsicht auf die Mineral-Geschichte Böhmens. 398 pp., Prag, Caspar Widtmann, 1796- I. Uiber einen Basalt von pyramidenförmig abgesonderten Stücken aus Böhmen. 1–46Google Scholar
  74. Reuss AE (1850) Bericht über geologishe Untersuchungen in der Umgebung von Franzensbad und Eger. Jahrb. Der K.K. Geol. Reichsanstalt 1:34–49Google Scholar
  75. Reuss AE (1852) Die geognostischen Verhaeltnisse des Egerer Bezirkes und des Ascher Gebietes in Böhmen. – Abhandlungen der k. k. geologischen Reichsanstalt, Bd. 1, Abth. 1, 1–72, WienGoogle Scholar
  76. Reynard E, Coratz P, Regolini-Bissing G (2009) Geomorphosites. Verlag Dr. Friedrich Pfeil, München, GermanyGoogle Scholar
  77. Reynard E, Coratza P, Giusti C (2011) Geomorphosites and geotourism. Geoheritage 3:129–130CrossRefGoogle Scholar
  78. Risso C, Németh K, Martin U (2006) Proposed geosites on Pliocene to Recent pyroclastic cone fields in Mendoza, Argentina [Geotopvorschläge für pliozäne bis rezente Vulkanfelder in Mendoza, Argentinien]. Z Dtsch Ges Geowiss 157:477–490Google Scholar
  79. Rojík P (2004) New stratigraphic subdivision of the Tertiary in the Sokolov Basin in Northwestern Bohemia. J Czech Geol Soc (J Geosci) 49:173–185Google Scholar
  80. Rossmässler EA (1840) Die Versteinerungen des Braunkohlesandsteines aus der Gegend von Altsattel in Böhmen (Elbogener Kreis). – 42 pp. Dresden-Leipzig.Google Scholar
  81. Rücker C, Günther T, Spitzer K (2006) Three-dimensional modelling and inversion of dc resistivity data incorporating topography – I. Modelling. Geophys J Int 166:495–505CrossRefGoogle Scholar
  82. Scrope GP (1825) Considerations on Volcanos: the probable causes of their phenomena, the laws which determine their march, the disposition of their products, and their connexion with the present state and past history of the globe; leading to the establishment of a new theory of the earth. – W. Phillips, London.Google Scholar
  83. Šebor J (1913) Bilinite – a new Czech mineral. Sborník Klubu Přírodovědeckého 1912:1–2Google Scholar
  84. Seifert W, Kämpf H (1994) Ba-enrichment in phlogopite of a nephelinite from Bohemia. Eur J Mineral 6:497–502CrossRefGoogle Scholar
  85. Shaw CSJ (2004) The temporal evolution of three magmatic systems in the West Eifel volcanic field, Germany. J Volcanol Geother Res 131:213–240CrossRefGoogle Scholar
  86. Šibrava V, Havlíček P (1980) Radiometric age of Plio-Pleistocene volcanic rocks in the Bohemian massif. Věst Ústř Úst Geol 55:129–150Google Scholar
  87. Šimon L, Maglay J (2005) Dating of sediments underlying the Putikov vŕšok volcano lava flow by the OSL method. Mineralia Slovaca 37:279–281Google Scholar
  88. Skácelová Z, Rapprich V, Valenta J, Hartvich F, Šrámek J, Radoň M, Gaždová R, Nováková L, Kolínský P, Pécskay Z (2010) Geophysical research on structure of partly eroded maar volcanoes: Miocene Hnojnice and Oligocene Rychnov volcanoes (northern Czech Republic). J Geosci 55:333–345. Google Scholar
  89. Slaby D, Ladwig R (1999) Abraham Gottlob Werner - seine Zeit und seine Bezüge zur Bergwirtschaft. Verlag der TU Bergakademie, Freiberg ISSN 0949-9970Google Scholar
  90. Špičák A, Horálek J (2001) Possible role of fluids in the process of earthquake swarm generation in the West Bohemia/Vogtland seismoactive region. Tectonophysics 336(1):151–161Google Scholar
  91. Špičáková L, Uličný D, Koudelková G (2000) Tectonosedimentary evolution of the Cheb Basin (NW Bohemia, Czech Republic) between late Oligocene and Pliocene: a preliminary note. Stud Geophys Geod 44:556–580CrossRefGoogle Scholar
  92. Stenonis N (1669) De solido intra solidum naturaliter contento dissertationis prodromus. Florentiae: ex typographia sub signo stellae, 1669. ETH-Bibliothek Zürich, Rar 1223, DomainMark, 78 S., [1] Bl. : Ill. (1 Tafel); 25 cm
  93. Šternberk KM (1820–1838) Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt. (Vol. 1–8)Google Scholar
  94. Tietz O, Büchner J, Lapp M (2017) The Stolpen Volcano in the Lausitz Volcanic Field (East Germany) – Volcanological, Petrographic and Geochemical Investigations at the Type Locality of Basalt. In: Magna T, Rapprich V (eds): Basalt 2017 Kadaň: Abstracts and excursion guides. – Czech Geological Society and Czech Geological Survey, 57–58Google Scholar
  95. Ulrych J, Ackerman L, Balogh K, Hegner E, Jelínek E, Pécskay Z, Přichystal A, Upton BGJ, Zimák J, Foltýnová R (2013) Plio-Pleistocene basanitic and melilititic series of the Bohemian Massif: K-Ar ages, major/trace element and Sr–Nd isotopic data. Chem Erde-Geochem 73:429–450CrossRefGoogle Scholar
  96. Valenta J, Rapprich V, Skácelová Z, Gaždová R, Fojtíková L (2014a) The newly discovered Neogene maar volcano near the Mariánské Lázně, Western Bohemia. Acta Geodyn Geomater 11:107–116Google Scholar
  97. Valenta J, Rapprich V, Stárková M, Skácelová Z, Fojtíková L, Staňek F, Bálek J (2014b) Problems and challenges in detection of pre-Mesozoic maar volcanoes: example from the Principálek Volcano in the Permian Krkonoše Piedmont Basin. J Geosci 59:169–181CrossRefGoogle Scholar
  98. Váně M (1961) Earth fires in the Tertiary of northwestern Bohemia. Acta Univ Carolinae, Andean Geol 2:219–234 (in Czech)Google Scholar
  99. Von Born IE (1773) Über einen ausgebrannten Vulcan bei der Stadt Eger in Böhmen. Praha. 16 pp.Google Scholar
  100. Von Cotta B (1832) Die Dendrolithen in Beziehung auf ihren inneren Bau. – Arnoldische Buchhandlung, Dresden, Leipzig, 87 pp.Google Scholar
  101. Von Cotta B (1866) Rocks classified and described: a treatise on lithology. Longmans, Green and Co, London, p 395Google Scholar
  102. Wagner GA, Gögen K, Jonckhere R, Wagner I, Woda C (2002) Dating of Quaternary volcanoes Komorní Hůrka (Kammerbühl) and Železná Hůrka (Eisenbühl), Czech Republic, by TL, ESR, alpha-recoil and fission track chronometry. Z Geol Wiss 30:191–200Google Scholar
  103. Walker GPL (1973) Explosive volcanic eruptions—a new classification scheme. Geol Rundsch 62:431–446CrossRefGoogle Scholar
  104. Werner AG (1787) Kurze Klassifikation und Beschreibung der verschiedenen Gebirgsarten. - Walther, 28 pp.Google Scholar
  105. Žáček V, Skála R, Chlupáčová M, Dvořák Z (2005) Ca-Fe3+-rich, Si-undersaturated buchite from Želénky, North-Bohemian brown coal basin Czech Republic. Eur J Mineral 17:623–633CrossRefGoogle Scholar
  106. Žáček V, Skála R, Dvořák Z (2010) Rocks and minerals formed by fossil combustion pyrometamorphism in the Neogene brown coal Most Basin Czech Republic. Bull Mineralogicko-Petrologického Oddělení Národního Muzea 18:1–32Google Scholar
  107. Žáček V, Skála R, Dvořák Z (2015) Combustion metamorphism in the Most Basin, Czech Republic. In: Stracher GB, Praksh A, Sokol EV (eds) coal and peat fires: a global perspective. Volume 3: Case studies–coal fires, Elsevier, pp. 161–199Google Scholar
  108. Zippe FXM (1829) Verhandlungen der Gesselschaft des vaterländisches Museums 1, 30, 310. Prag.Google Scholar
  109. Zolitschka B, Negendank JFW, Lottermoser BG (1995) Sedimentological proof and dating of the early Holocene volcanic eruption of Ulmener maar (Vulkaneifel, Germany). Geol Rundsch 84:213–219CrossRefGoogle Scholar

Copyright information

© The European Association for Conservation of the Geological Heritage 2018

Authors and Affiliations

  1. 1.Czech Geological SurveyPragueCzech Republic
  2. 2.Institute of Engineering Geology, Hydrogeology, and Applied Geophysics, Faculty of ScienceCharles UniversityPragueCzech Republic
  3. 3.Institute of GeophysicsAcademy of Sciences of the Czech RepublicPragueCzech Republic
  4. 4.CNRS, IRD, OPGC, Laboratoire Magmas et VolcansUniversité Clermont AuvergneClermont-FerrandFrance
  5. 5.Environmental Geology, Natural Resources Management DepartmentNew Mexico Highlands UniversityLas VegasUSA
  6. 6.Sokolovská uhelná, a.sSokolovCzech Republic

Personalised recommendations