, Volume 9, Issue 3, pp 329–349 | Cite as

Volcanic Geoheritage and Geotourism Perspectives in Hungary: a Case of an UNESCO World Heritage Site, Tokaj Wine Region Historic Cultural Landscape, Hungary

  • János Szepesi
  • Szabolcs Harangi
  • Zsuzsanna Ésik
  • Tibor József Novák
  • Réka Lukács
  • Ildikó Soós
Original Article


In protected areas (e.g. geoparks, UNESCO sites), the identification of the different aspects of geoheritage site values is part of a holistic concept of protection, education and sustainable development. In the past years, significant progress has been achieved in the volcano tourism in Hungary as shown by the acceptance of two geoparks as members of Global Geoparks Network. They are the Bakony–Balaton Geopark and the Novohrad–Nograd Geopark, which involves also the old village of Hollókő UNESCO cultural heritage site. These geoparks as well as the recently (2013) opened Kemenes Volcano Park used primarily the volcanological natural values in their application, and these play still an important role to attract the visitors. The Tokaj Wine Region (TWR) Historic Cultural Landscape (inscribed on the World Heritage List in 2002 as a cultural site) is also characterized by high geodiversity due to complex volcanic settings (andesite–dacite composite cones, silicic pyroclastites, lava domes, hydrothermal activity) and specialized viticultural land use of the cultural landscape. While the area of the Bakony–Balaton Geopark is situated in a well-known region and has a long tradition in tourism with a lot of innovation, the Tokaj wine region needs a significant effort to introduce their volcanic geoheritage values into the tourism market. The systematic inventory and assessment of the geoheritage elements are essential steps in different scales of geoconservation and establishment of the priorities in site management. This inventory work emphasizes the relationship between the sites at different scales and highlights the interaction between eroded volcanic relief and human activity. The inventory classifies the objects in two main geosite categories: (a) volcanic edifices resulting from denudation and inversion of the relief and (b) geodiversity sites connected to land use traditions of the cultural landscape. The assessment evaluates the scientific, cultural/historical, aesthetic and socio-economic values and helps to define priorities in site management. The recently suggested 900 km long, cross-Hungary volcano route starts at the TWR and involves additional 50 planned stations all along the country. They represent various volcanological phenomena from silicic ignimbrite sheets through andesitic stratocones to basaltic volcanic fields. These meet significant historic, cultural, gastronomic tourism attractions to support the promotion of volcanic geoheritage.


Volcanic geoheritage UNESCO cultural heritage Geosite inventory and assessment Geotourism Thematic route 



Constructive comments provided by Károly Németh greatly helped us to clarify our views in the final manuscript. Part of this study belongs to Zsuzsanna Ésik’s PhD work at the Debrecen University. Réka Lukács’s contributions to this work belong to her studies supported by the Bolyai János Research Fellowship and NKFIH (OTKA PD 112584).


  1. Albert G, Csillag G (2011): Geo-helyszínek a Káli-medencében. Accessed 26 Feb 2016
  2. Aramaki S (1984) Formation of the Aira Caldera, southern Kyushu, ∼22,000 years ago. J Geophys Res 89:8485–8501CrossRefGoogle Scholar
  3. ArcGIS Online (2016) UNESCO World Heritage Sites. Accessed 20 Feb 2016
  4. Bajnóczi B, Molnár F, Maeda K, Izawa E (2000) Shallow level low-sulphidation type epithermal systems in the Regec caldera, Central Tokaj Mountains, NE-Hungary. Geol Carpath 51:217–227Google Scholar
  5. Bakony-Balaton Geopark (2016). Accessed 26 Feb 2016
  6. Balassa I (1991) Tokaj-Hegyalja szőlője és bora Tokaj-Hegyaljai ÁG. Borkombinát, Tokaj, p. 752Google Scholar
  7. Beudant FS (1822) Voyage mineralogique et geologique en Hongrie pendant l’année 1818. Paris, pp 1–3Google Scholar
  8. Brilha J (2002) Geoconservation and protected areas. Environ Conserv 29(3):273–276CrossRefGoogle Scholar
  9. Brilha J (2016) Inventory and quantitative assessment of geosites and geodiversity sites: a review. Geoheritage 8:116. doi: 10.1007/s12371-014-0139-3
  10. Brocx M, Semeniuk V (2007) Geoheritage and geoconservation—history, definition, scope and scale. J R Soc West Aust 90:53–87Google Scholar
  11. Bruno DE, Crowley BE, Gutak JM, Moroni A, Nazarenko OV, Oheim KB, Ruban DA, Tiess G, Zorina SO (2014) Paleogeography as geological heritage: developing geosite classification. Earth Sci Rev 138:300–312CrossRefGoogle Scholar
  12. Bruschi VM, Cendrero A (2009) Direct and parametric methods for the assessment of geosites and geomorphosites. In: Reynard E, Coratza P, Regolini-Bissig G (eds) Geomorphosites. Pfeil, Munchen, pp. 73–88Google Scholar
  13. Bujdosó Z, Pénzes J (2012) The spatial aspects and distribution of the touristic development resources in the border microregions of Hungary. In: Roma population on the peripheries of the Visegrad countries: spatial trends and social challenges/Pénzes János, Radics Zsolt, Didakt Kft., Debrecen, pp 226–239Google Scholar
  14. Bujdosó Z, Baros Z, Dávid L, Baiburiev R, Gyurkó Á (2015) Potential use of the coal and ore mining related industrial heritage for tourism purposes in the North Hungarian region. Acta Geoturistica 6(1):21–29Google Scholar
  15. Cas RAF, Wright JV (1987) Volcanic successions, modern and ancient. Allen and Unwin, London, p. 528CrossRefGoogle Scholar
  16. Cayla N (2014) Volcanic geotourism in France. In: Erfurt-Cooper P (ed) Volcanic tourist destinations. Springer, pp 131–138Google Scholar
  17. Cole JW (1990) Structural control and origin of volcanism in the Taupo volcanic zone, New Zealand. Bull Volcanol 52:445–459CrossRefGoogle Scholar
  18. Coratza P, Bruschi VM, Piacentini D, Saliba D, Soldati M (2011) Recognition and assessment of geomorphosites in Malta the Il-Majjistral Nature and History Park. Geoheritage 3:175–185CrossRefGoogle Scholar
  19. CORINE Land Cover 2006 seamless vector data (2016). Accessed 26 Feb 2016
  20. Dávid, L. (2008) Quarrying and other minerals. In: Szabó J, Dávid L, Lóczy D (eds) Anthropogenic geomorphology: a guide to man-made landforms. Springer, pp 185–200Google Scholar
  21. Edelsbacher F, Koch W (2001) Vulkanland – dorfgrenzen-grenzenlos. Graz Wien Koln, StyriaGoogle Scholar
  22. Edinburgh World Heritage City (2011) The old and new towns of Edinburgh Word Heritage Site Management Plan 2011–2016, pp 1–96Google Scholar
  23. Erfurt-Cooper P (2011) Geotourism in volcanic and geothermal environments: playing with fire? Geoheritage 3(3):187–193CrossRefGoogle Scholar
  24. Erfurt-Cooper P (ed) (2014) Volcanic tourist destinations. Springer, p 384Google Scholar
  25. Erfurt-Cooper A, Cooper M (2010) Volcano and geothermal tourism: sustainable geo-resources for leisure and recreation. Earthscan, London, p. 378Google Scholar
  26. Esmark J (1798) Kurze Beschreibung einer mineralogischen Reise durch Ungarn. Siebenbürgen und das Bannat, FreybergGoogle Scholar
  27. Ésik Z, Szepesi J, Rózsa P (2015) Geosite inventory and assessment of Tokaj Wine Region, Historic Cultural Landscape, Hungary. 2nd Volcandpark Conference, Lanzarote Abstract Book, pp 6–7Google Scholar
  28. Fassoulas C, Mouriki D, Dimitrou-Nikolakis P, Iliopoulos G (2012) Quantitative assessment of geotopes as an effective tool for geoheritage management. Geoheritage 4:177–193CrossRefGoogle Scholar
  29. Feuilliet T, Sourp E (2011) Geomorphological heritage of the Pyrenees National Park (France): assessment, clustering and promotion of geomorphosites. Geoheritage 3:151–162CrossRefGoogle Scholar
  30. Fichtel JE (1791) Mineralogische Bemerkungen von den Karpathen. I–II. – ViennaGoogle Scholar
  31. Fichtel, JE (1794) Mineralogische Aufsätze. – ViennaGoogle Scholar
  32. Frey ML, Schäfer K, Büchel G, Pat M (2006) Geoparks—a regional, European and global policy. In: Dowling RK, Newsome D (eds) Geotourism, pp 95–118Google Scholar
  33. Frisnyák S (2012) A Tokaj-Hegyaljai borpincék földrajzi vázlata. In: Frisnyák S, Gál A (eds) Tokaj-hegyaljai borvidék hazánk első történeti tája, pp 157–171Google Scholar
  34. Fuertes-Gutierrez I, Fernandez-Martinez E (2010) Geosites inventory in the Leon Province (northwestern Spain): a tool to introduce geoheritage into regional environmental management. Geoheritage 2:57–75CrossRefGoogle Scholar
  35. Fuertes-Gutierrez I, Fernandez-Martinez E (2012) Mapping geosites for geoheritage management: a methodological proposal for the regional park of Picos de Europa (Leon, Spain). Environ Manag 50(5):789–806CrossRefGoogle Scholar
  36. Gadányi P (2015) Buttes in the Tapolca basin. In: Lóczy D (ed) Landscapes and landforms of Hungary. Springer, pp 63–70Google Scholar
  37. German Volcano Route (2016). Accessed 26 Feb 2016
  38. Global Geopark Network (2012) Statutes of the international geoscience and geopark programme. Accessed 21 Aug 2016
  39. Gonggrijp GP (1997) Geotope motivation and selection: a way of objectifying the subjective. In: Marinos PG, Koukis GC, Tsiambaos GC, Stournaras GC (eds) Engineering geology and the environment, vols 1–3, pp 2949–2954Google Scholar
  40. Gray M (2004) Geodiversity: valuing and conserving abiotic nature. Wiley, ChichesterGoogle Scholar
  41. Gray JM (2008) Geodiversity: developing the paradigma. Proc Geol Assoc 119:287–298CrossRefGoogle Scholar
  42. Gross M, Fritz I, Piller WE, Soliman A, Harzhauser M, Hubmann B, Moser B, Scholger R, Suttner TJ, Bojar HP (2007) The Neogene of the Styrian basin—guide to excursion. Joannea Geol Paläont 9:117–193Google Scholar
  43. Gyarmati P, Szepesi J (2007): Fejlődéstörténet, földtani felépítés, földtani értékek in: Baráz Cs, Kiss G (eds) A Zempléni Tájvédelmi Körzet, Abaúj és Zemplén határán Bükki Nemzeti Park, Eger pp 15-44Google Scholar
  44. Hably L (1985) Ipolytarnóc alsó-miocén korú flórája (early Miocene plant fossils from Ipolytarnóc, N Hungary). Geol. Hung., Ser. Palaeontol. 45:73–255Google Scholar
  45. Harangi S (2001) Neogene to quaternary volcanism of the Carpathian-Pannonian region—a review. Acta Geol Hung 44:223–258Google Scholar
  46. Harangi S (2014) Volcanic heritage of the Carpathian-Pannonian region in eastern-central Europe. In: Erfurt-Cooper P (ed) Volcanic Tourist Destinations. Springer, pp 103–124Google Scholar
  47. Harangi S (2015) Vulkánok. A Kárpát-Pannon térség tűzhányói. Geolitera, Szeged 2nd edition, p 482Google Scholar
  48. Harangi R, Harangi S (1995) Volcanological study of the Neogene basaltic volcano of Sághegy (little Hungarian plain volcanic field, western Hungary). Acta Vulcanol 7(2):189–197Google Scholar
  49. Harangi S, Lenkey L (2007) Genesis of the Neogene to quaternary volcanism in the Carpathian-Pannonian region: role of subduction, extension, and mantle plume. Geol Soc Am Spec Pap 418:67–92Google Scholar
  50. Harangi S, Németh K, Korbély B, Szepesi J, Szarvas I, Lukács R (2015) The Pannonian Volcano Route—volcanological heritage and geotouristic perspectives. 26th IUGG General Assembly, Abstract: IUGG-4802Google Scholar
  51. Henriques MH, dos Reis RP, Brilha J, Mota T (2011) Geoconservation as an emerging geoscience. Geoheritage:1–12Google Scholar
  52. Herčko P, Domaracká L, Ambroš P (2014) Mining Bethlehem at Banská Štiavnica—example of mining heritage in Slovakia. Acta Geoturistica 5(2):64–68Google Scholar
  53. Hoenig HG (2005) Geothermal resources as a promoter of regional development, The success story of the Styrian volcanic region Proceedings World Geothermal Congress 2005 Antalya, Turkey, pp 1–8Google Scholar
  54. Horváth G, Lóczy D (2015) Geoheritage, geoconservation, geomorphosites in Hungary. In: Lóczy D (ed) Landscapes and landforms of Hungary. Springer, pp 281–288Google Scholar
  55. Horváth F, Bada G, Szafián P, Tari G, Ádám A, Cloetingh S (2006) Formation and deformation of the Pannonian Basin: constraints from observational data. Geological Society, London, Memoirs 32(1):191–206CrossRefGoogle Scholar
  56. Hovorka D, Illasova L (2010) The Tokaj Mts. obsidian—its use in prehistory and present application. In: Proceedings of the XIX CBGA Congress, Thessaloniki, Greece Special Volume 100:385–390Google Scholar
  57. Hroncek P (2015) Local quarries and how to use them in geotourism. Acta Geoturistica 6(1):11–20Google Scholar
  58. Incze J. and Novák, T. J. (2013) Geomorphological characteristic and significance of dry constructed terrace stone walls on abandoned vine-plantations in Tokaj Big-Hill. In: Novotny J, Lehotsky M, Raczkowska Z, Machova Z (eds) 2013. Carpatho-Balkan-Dinaric conference on geomorphology book of abstracts, Geomorphologia Slovaca et Bohemica, 13, p 33Google Scholar
  59. Incze J, Novák T J (2016) Identification of extent, topographic position and land abandonment processes of vineyard terraces in Tokaj-Hegyalja wine region between 1784 and 2010. J Maps (in Press)Google Scholar
  60. Ipolytarnóc Paleontological Site (2016). Accessed 26 Feb 2016
  61. Joyce B (2009) Geomorphosites and volcanism. In: Reynard E, Coratz P, Regolini-Bissing G (eds) Geomorphosites. Pfeil, München, pp. 175–188Google Scholar
  62. Kagermeier A (2010) Experience orientated staging of nature oriented and geotourism attractions—a case study from the European Geopark Vulkaneifel. In: Kagermeier A, Willms J (eds) Tourism development in low mountain ranges. Mannheim, pp 23–46Google Scholar
  63. Karátson D (2007) A Börzsönyől a Hargitáig—Vulkanológia, felszínfejlődés, ősföldrajz. Typotex Kiadó, Budapest, p. 463Google Scholar
  64. Kemenes Volcano Park (2016). Accessed 26 Feb 2016
  65. Komlos J 1983 The Habsburg Monarchy as a customs union: economic development in Austria-Hungary in the nineteenth century, p. 370Google Scholar
  66. Konecny, V., Kovac, M., Lexa, J., Sefara J. 2002 Neogene evolution of the Carpatho-Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. – European Geosciences Union, Stephan Mueller Special Publication Series, 1, 105–123,Google Scholar
  67. Kordos L (1985) Lábnyomok az ipolytarnóci alsó-miocén korú homokkőben (footprints in lower Miocene sandstone at Ipolytarnóc, N Hungary). Geol Hung, Ser Palaeontol 46:257–415Google Scholar
  68. Kršák B, Štrba L, Lukáč M, Sidor C, Molokáč (2015) Impact of geopark establishment on regional tourism development; case study from Slovak part of the Novohrad-Nógrád Geopark. Acta Geoturistica, volume 6(2):30–38Google Scholar
  69. Kubalikova L (2013) Geomorphosite assessment for geotourism purposes. Czech Journal of Tourism 2:80–104CrossRefGoogle Scholar
  70. Lexa J, Seghedi I, Németh K, Szakács A, Konecny V, Pécskay Z et al (2010) Neogene-quaternary volcanic forms in the Carpathian-Pannonian region: a review. Central European Journal of Geosciences 2:207–270Google Scholar
  71. Lima FF, Brilha JB, Salamuni E (2010) Inventorying geological heritage in large territories: a methodological proposal applied to Brazil. Geoheritage 2(3–4):91–99. doi: 10.1007/s12371-010-0014-9 CrossRefGoogle Scholar
  72. Macdonald GA (1972) Volcanoes. Prentice-Hall, NJ, p. 510Google Scholar
  73. Martin U, Németh K (2004a) Mio/Pliocene phreatomagmatic volcanism in the western Pannonian Basin. Geologica Hungarica, Series Geologica tomus 26, Budapest, pp 191. ISBN:963–671- 238-7Google Scholar
  74. Martin U, Németh K (2004b) Peperitic lava lake-fed sills at Ság-hegy, western Hungary: a complex interaction of a wet tephra ring and lava. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems, vol 234. Geological Society, Special Publications, London, pp. 33–50Google Scholar
  75. Mátyás E (2005) A Tokaji-hegységi nemfémes ásványi nyersanyagok földtani kutatásának és bányászatának története. In: Mátyás EA (ed) Tokaji-hegység geologiája és ásványi nyersanyagai egy geológus életútja tükrében, pp 297–362Google Scholar
  76. Mester Zs. Rácz B (2010) The spread of the Körös culture and the raw material sources in the northeastern part of the Carpathian Basin: a research project. In: Kozłowski JK, Raczky P (ed) 2010 Neolithization of the Carpathian Basin: northernmost distribution of the Starčevo/Körös culture Kraków-Budapest, pp 23–57Google Scholar
  77. Molnár F (1993) Tokaji-hegységi ércesedések és indikációk genetikája folyadékzárvány vizsgálatok alapján PhD értekezés Eötvös Loránd EgyetemGoogle Scholar
  78. Molnár F, Zelenka T, Mátyás E, Pécskay Z, Bajnóczi B, Kiss J, Horváth I (1999) Epithermal mineralization of the Tokaj Mountains, Northeast Hungary; shallow levels of low-sulfidation type systems. Guidebook Series–Society of Economic Geologists 31:109–153Google Scholar
  79. Moufti MR, Németh K (2013) The intra-continental Al Madinah volcanic field, western Saudi Arabia: a proposal to establish Harrat Al Madinah as the first volcanic geopark in the Kingdom of Saudi Arabia. Geoheritage 5(3):185–206CrossRefGoogle Scholar
  80. Moufti MR, Németh K, Murcia H, Al-Gorry SF, Shawali J (2013a) Scientific basis of the geoheritage and geotouristic values of the 641 AD Al Madinah eruption site in the Al Madinah volcanic field, Kingdom of Saudi Arabia. The Open Geology Journal 7:31–44CrossRefGoogle Scholar
  81. Moufti MR, Németh K, Murcia H, Lindsay J (2013b) The 1256 AD Al Madinah historic eruption geosite as the youngest volcanic chain in the Kingdom of Saudi Arabia. Int J Earth Sci 102(4):1069–1070CrossRefGoogle Scholar
  82. Moufti MR, Németh K, El-Masry N, Qaddah A (2014) Volcanic geotopes and their geosites preserved in an arid climate related to landscape and climate changes since the Neogene in northern Saudi Arabia: Harrat Hutaymah (Hai’il region). Geoheritage 7(2):103–118CrossRefGoogle Scholar
  83. Müller I (2013) A Tokaj-hegyaljai pincék múltja, értékei és sorsa, pp 1–22Google Scholar
  84. Neches I-M (2016) Geodiversity beyond material evidence: a geosite type based interpretation of geological heritage. Proceedings of the Geologists’ Association (in press)Google Scholar
  85. Newsome D, Dowling RK (eds) (2010) Geotourism: the tourism of geology and landscape. Goodfellow Publishers Ltd., OxfordGoogle Scholar
  86. Novák TJ, Incze J (2014) Retaining walls of abandoned vineyard terraces on Tokaj Nagy Hill, 4D. Journal of Landscape Architecture And Garden Art 35:20–35Google Scholar
  87. Novák TJ, Incze J, Spohn M, Glina B, Giani L (2014) Soil and vegetation transformation in abandoned vineyards of the Tokaj Nagy-Hill. Catena 123:88–89CrossRefGoogle Scholar
  88. Novohrad-Nógrád Geopark (2016). Accessed 26 Feb 2016
  89. Nyizsalovszki R, Fórián T (2007) Human impact on the landscape in the Tokaj foothill region. Hungary Geogr Fis Din Quat 30:219–224Google Scholar
  90. Ólafsdóttir R, Dowling R (2014) Geotourism and geoparks—a tool for geoconservation and rural development in vulnerable environments: a case study from Iceland. Geoheritage 6(1):71–87CrossRefGoogle Scholar
  91. Pálfy J, Mundil R, Renneb P, Bernor R, Kordos L, Gasparik M (2007) U–Pb and 40Ar/39Ar dating of the Miocene fossil track site at Ipolytarnóc (Hungary) and its implications. Earth Planet Sci Lett 258:160–174CrossRefGoogle Scholar
  92. Panizza M (2001) Geomorphosites: concepts, methods and example of geomorphological survey. Chin Sci Bull 46(Suppl. Bd):4–6CrossRefGoogle Scholar
  93. Pécskay Z, Molnár F (2002) Relationships between volcanism and hidrothermal activity in the Tokaj Mountains, Northeast Hungary. Geol Carpath 53:303–314Google Scholar
  94. Pécskay Z, Balogh K, Székyné FV, Gyarmati P (1987) A Tokaji-hegység miocén vulkánosságának K/Ar geokronológiája Földt. Közl 11:237–253Google Scholar
  95. Pécskay Z, Balogh K, Széky-Fux V, Gyarmati P (1989) Geochronological investigations on the Neogene volcanism of the Tokaj Mountains. Can J Soil Sci 69:635–655Google Scholar
  96. Pécskay Z, Lexa J, Szakács A, Balogh K, Seghedi I, Konecný V, Kovác M, Márton E, Széky-Fux V, Póka T, Gyarmati P, Edelstein O, Rosu E, Zec B (1995) Space and time distribution of Neogene–quaternary volcanism in the Carpatho-Pannonian region. Acta Volcanologica 72:5–29Google Scholar
  97. Pénzes J (2013) The dimensions of peripheral areas and their restructuring in Central Europe. Hungarian Geographical Bulletin 62(4):373–386Google Scholar
  98. Pereira P, Pereira DI (2010) Methodological guidelines for geomorphosite assessment. Géomorphol Relief, Processus, Environ 2:215–222CrossRefGoogle Scholar
  99. Reynard E, Fontana G, Kozlik L, Scapozza C (2007) A method for assessing “scientific” and “additional values” of geomorphosites. Geographica Helvetica Jg. 62. Heft 3:148–158Google Scholar
  100. Reynard E, Perret A, Bussard J, Grangier L, Martin S (2015) Integrated approach for inventory and management of geomorphological heritage at the regional scale. Geoheritage:1–20. doi: 10.1007/s12371-015-0153-0
  101. Richthofen F (1860) Studien aus dem Ungarisch-Siebenbürgischen Trachytgebirgen. Jahrb K K geol Reichsanstalt 11:153–278Google Scholar
  102. Rózsa P (1994) The dacite flows of the Miocene Tokaj-Nagyhegy stratovolcano: an example of magma mixing. Geologica Carpathica Bratislava 45:139–144Google Scholar
  103. Rózsa P, Kázmér M, Papp G (2003) Activities of volcanist and neptunist ‘natural philosophers’ and their observations in the Tokaj Mountains (NE Hungary) in the late 18th century (Johann Ehrenreich von Fichtel, Robert Townson and Jens Esmark). Bull of Geol Soc Hung 133(1):125–140Google Scholar
  104. Rózsa P, Szöőr GY, Elekes Z, Gratuze B, Uzonyi I, Kiss Z (2006) Comparative geochemical studies of obsidian samples from various localities. Acta Geol Hung 49(1):73–87CrossRefGoogle Scholar
  105. Ruban DA (2010) Quantification of geodiversity and its loss. Proc Geol Assoc 121(3):326–333CrossRefGoogle Scholar
  106. Ruban DA (2016) Comment on “Geotourist values of loess geoheritage within the planned Geopark Małopolska Vistula River Gap, Poland” by J. Warowna et al. [Quaternary International, in press]. Quaternary International (in press)Google Scholar
  107. Schafarzik F (1904) A magyar korona országai területén létező kőbányák részletes ismertetése Magyar Állami Földtani Intézet, p 413Google Scholar
  108. Seghedi I, Downes H (2011) Geochemistry and tectonic development of Cenozoic magmatism in the Carpathian–Pannonian region. Gondwana Res 20:655–672CrossRefGoogle Scholar
  109. Seghedi I, Downes H, Szakacs A, Mason PRD, Thirlwall MF, Rosu E, Pecskay Z, Marton E, Panaiotu C (2004) Neogene-quaternary magmatism and geodynamics in the Carpathian-Pannonian region: a synthesis. Lithos 72:117–146CrossRefGoogle Scholar
  110. Seghedi I, Downes H, Harangi S, Mason PRD, Pecskay Z (2005) Geochemical response of magmas to Neogene-quaternary continental collision in the Carpathian-Pannonian region: a review. Tectonophysics 410:485–499CrossRefGoogle Scholar
  111. Singer BS, Andersen NL, Le Mével H, Feigl KL, DeMets C, Tikoff B, Thurber CH, Jicha BR, Cardona C, Córdova L, Gil F, Unsworth MJ, Williams-Jones G, Miller C, Fierstein J, Hildreth W, Vazquez J (2014) Dynamics of a large, restless, rhyolitic magma system at Laguna del Maule, southern Andes, Chile. GSA Today 24:4–10CrossRefGoogle Scholar
  112. Szabó J (1866) Tokaj-Hegyalja és környékének földtani viszonyai Mathematikai és Természettudományi Közlemények. 4:226–303Google Scholar
  113. Szabó J (1894) Típuskeveredés a Tokaj-hegyalján. – In: Típuskeveredések a dunai trachytcsoportban. Földtani Közlöny 24:171–172Google Scholar
  114. Szabó J, Török S (1867) Album of Tokay-Hegyalja, vinicultural society by Tokay-Hegyalja, Pest, p 244Google Scholar
  115. Szepesi J, Ésik Z (2015) Megyer Hill: old millstone quarry. In: Lóczy D (ed) Landscapes and landforms of Hungary Springer Science, pp 227–235Google Scholar
  116. Szepesi J, Ésik Z, Novák TJ, Harangi Sz (2015) Hidden volcanic geoheritage of an UNESCO World Heritage Site, Tokaj Wine Region, Historic Cultural Landscape, Hungary 2nd Volcandpark Conference, Lanzarote Abstract Book, pp 35–36Google Scholar
  117. T Biró K (1984) Distribution of obsidian from the Carpathian sources on central European Palaeolithic and Mesolithic sites. AAC 23:5–42Google Scholar
  118. T Biró K (2002) Advances in the study of early Neolithic lithic materials in Hungary. Antaeus 25:119–168Google Scholar
  119. Thouret JC (1999) Volcanic geomorphology—an overview. Earth-Sci Rev 47:95–131CrossRefGoogle Scholar
  120. Thouret JC (2004) Hazards and processes on volcanic mountains. Chapter 11 in Owens PO and Slaymaker O (eds.) Mountain geomorphology. Arnold pp 242–273.Google Scholar
  121. Townson R (1797) Travels in Hungary with a short account of Vienna in the year 1793. LondonGoogle Scholar
  122. Tuzson J (1901) A Tarnóczi kövült fa (Pinus tarnócziensis n. sp.) (Der Fossile Baustamm bei Tarnócz) (Pinus tarnócziensis n. sp.). Termr Füz 24:273–316Google Scholar
  123. Þingvellir Commission (2004) Þingvellir National Park Management Plan 35, pp 2004–2024Google Scholar
  124. Váti KHT (2000) The world heritage documentation for the nomination of the cultural landscape of Tokaji wine region. Hungarian Ministry of Environmental Protection, Budapest, p. 143Google Scholar
  125. Vujicic MD, Vasiljevic DE, Markovic SB, Hose TA, Lukic T, Hadzic O, Janicevic S (2011) Slankamen villages preliminary geosite assessment model (GAM) and its application on Fruska Gora Mountain, potential geotourism destination of Serbia. Acta Geographica Slovenica 51(2):361–377CrossRefGoogle Scholar
  126. Warowna J, Zgłobicki W, Kołodynska-Gawrysiak R, Gajek G, Gawrisiak L, Telecka M (2016) Geotourist values of loess geoheritage within the planned Geopark Malopolska Vistula river gap, Poland. Quaternary International (in press)Google Scholar
  127. Wilson CJN, Houghton BF, McWilliams MO, Lanphere MA, Weaver SD, Briggs RM (1995) Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review. J Volcanol Geotherm Res 68:1–28CrossRefGoogle Scholar
  128. Wimbledon WA (2011) Geosites—a mechanism for protection, integrating national and international valuation of heritage sites. Geologia dell’Ambiente, supplemento n. 2/2011:13–25Google Scholar
  129. Wimbledon WA, Benton MJ, Bevins RE, Black GP, Bridgland DR, Cleal CJ, Cooper RG, May VJ (1995) The development of a methodology for the selection of British geological sites for geoconservation: part 1. Mod Geol 20:159–202Google Scholar
  130. Wimbledon WAP, Andersen S, Cleal CJ, Cowie JW, Erikstad L, Gonggrijp GP, Johansson CE, Karis LO, Suominen V (1999) Geological World Heritage: GEOSITES—a global comparative site inventory to enable prioritisation for conservation. Memorie Descrittive della Carta Geologica d’Italia, vol. LIV. pp 45–60Google Scholar
  131. Wood C (2009) World Heritage volcanoes: A thematic study. A global review of volcanic World Heritage properties: present situation, future prospects and management requirements. IUCN World Heritage Studies 8, Gland, Switzerland, pp 61Google Scholar
  132. World Heritage Committee (2002) Decisions adopted by 26th session of the World Heritage Committee, WHC-02/CONF.202/INF.15. pp 61–62Google Scholar
  133. Zelenka T, Gyarmati P, Kiss J (2012) Paleovolcanic reconstruction in the Tokaj Mountains. Cent Eur Geol 55:49–84CrossRefGoogle Scholar

Copyright information

© The European Association for Conservation of the Geological Heritage 2016

Authors and Affiliations

  1. 1.MTA-ELTE Volcanology Research GroupBudapestHungary
  2. 2.Department of Mineralogy And GeologyUniversity of DebrecenDebrecenHungary
  3. 3.Department of Landscape Protection and Environmental GeographyUniversity of DebrecenDebrecenHungary

Personalised recommendations