Advertisement

Geoheritage

, Volume 6, Issue 2, pp 129–140 | Cite as

Using Terrestrial Laser Scanning for the Recognition and Promotion of High-Alpine Geomorphosites

  • L. Ravanel
  • X. Bodin
  • P. Deline
Original Article

Abstract

High-alpine geomorphosites are poorly understood and developed, mostly because of the heavy constraints of high mountain areas. Meanwhile, they are geoheritage areas that are often extremely vulnerable to global warming: glaciers and permafrost areas are currently affected by major changes due to increasing air temperature. To deal with the high spatial variability of landforms and processes, research on alpine geomorphosites often needs the use of advanced methods of high-resolution topography, among which terrestrial laser scanning plays an increasingly crucial role. Carried out on some tenth of high-elevation sites across the Alps since the beginning of the 2000s, this method is particularly interesting for the recognition and development of high-alpine geomorphosites. Indeed, it can be implemented for identifying and characterizing the geomorphic objects (survey, monitoring and mapping), helping planning and protection policies and serving geotouristic development (communication about the processes involved, basis for documents).

Keywords

High-alpine geomorphosites Terrestrial laser scanning Debris-covered glacier Rock glacier Rock wall Geotourism 

References

  1. Abellan A, Vilaplana JM, Martinez J (2006) Application of a long-range terrestrial laser scanner to a detailed rockfall study at Vall de Núria (Eastern Pyrenees, Spain). Eng Geol 88:136–148CrossRefGoogle Scholar
  2. Adams JC, Chandler JH (2002) Evaluation of lidar and medium scale photogrammetry for detecting soft-cliff coastal change. Photogramm Rec 17:405–418CrossRefGoogle Scholar
  3. Alcantara-Ayala I (2009) Geomorphosites managements in areas sensitive to natural hazards. In: Reynard E, Coratza P, Regolini-Bissig G (eds) Geomorphosites. München, Pfeil Verlag, pp 163–173Google Scholar
  4. Avian M, Bauer A (2006) First results on monitoring glacier dynamics with the aid of terrestrial laser scanning on Pasterze Glacier (Hohe Tauern, Austria). Grazer Schriften der Geographie und Raumforschung 41:27–36Google Scholar
  5. Avian M, Kellerer-Pirklbauer A, Bauer A (2009) LiDAR for monitoring mass movements in permafrost environments at the cirque Hinteres Langtal, Austria, between 2000 and 2008. Nat Hazards Earth Syst Sci 9:1087–1094CrossRefGoogle Scholar
  6. Bauer A, Paar G, Kaufmann V (2003) Terrestrial laser scanning for rock glacier monitoring. In: Proceedings of the 8th international conference on permafrost, Zürich, pp 55–60Google Scholar
  7. Bauer A, Paar G, Kaltenböck A (2005) Mass movement monitoring using terrestrial laser scanner for rock fall management. In: Proceedings of the 1st international symposium on geo-information for disaster management, Delft, The Netherlands, pp 393–406Google Scholar
  8. Bauer A, Kaufmann V, Kellerer-Pirklbauer A, Avian M, Paar G (2006) Terrestrial laser scanning for glacier monitoring: a comparison to standard geodetic and photogrammetric methods, and documentation of the glacier retreat of Goessnitzkees (Schober group, Austria) between 2000 and 2005. Abstract of the 9th international symposium on high mountain remote sensing cartography, Graz, Austria, 1 pGoogle Scholar
  9. Beniston M (2004) The 2003 heat wave in Europe. A shape of things to come? Geophys Res Lett 31:2022–2026CrossRefGoogle Scholar
  10. Beniston M (2005) Mountain climates and climatic change: an overview of processes focusing on the European Alps. Pure Appl Geophys 162:1587–1606CrossRefGoogle Scholar
  11. Besl P, McKay N (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14:239–256CrossRefGoogle Scholar
  12. Bodin X, Schoeneich P, Jaillet S (2008) High-resolution DEM extraction from terrestrial LiDAR topometry and surface kinematics of the creeping alpine permafrost: the Laurichard rock glacier case study (southern French Alps). In: Proceedings of the 9th international conference on permafrost, Fairbanks, Alaska, 1, pp 137–142Google Scholar
  13. Bodin X, Thibert E, Fabre D (2009) Two decades of response (1986–2006) to climate by the Laurichard rock glacier. Permafr Periglac Process 20:331–344CrossRefGoogle Scholar
  14. Chardon M (1984) Montagne et haute montagne alpine, critères et limites morphologiques remarquables en haute montagne. Rev Géogr Alp 72:213–224CrossRefGoogle Scholar
  15. Conforti D, Deline P, Mortara G, Tamburini A (2005) Terrestrial scanning LiDAR technology applied to study the evolution of the ice-contact Miage lake (Mont Blanc, Italy). Report on the Joint ISPRS Commission VI, WG IV/4, 5 pGoogle Scholar
  16. Deline P (2009) Interactions between rock avalanches and glaciers in the Mont Blanc massif during the late Holocene. Quat Sci Rev 28:1070–1083CrossRefGoogle Scholar
  17. Deline P, Bölhert R, Coviello V, Cremonese E, Gruber S, Krautblatter M, Jaillet S, Malet E, Morra di Cella U, Noetzli J, Pogliotti P, Rabatel A, Ravanel L, Sadier B, Verleysdonk S (2009) L’Aiguille du Midi (massif du Mont Blanc): un site remarquable pour l’étude du permafrost des parois d’altitude. Collection EDYTEM 8:135–146Google Scholar
  18. Deline P, Grange C, Jaillet S, Tamburini A (2011) Sept ans de suivi de la dynamique de la falaise de glace du lac du Miage (massif du Mont Blanc) par scanner laser terrestre. Collection EDYTEM 12:95–106Google Scholar
  19. Deroux B (2012) Apport de la lasergrammétrie terrestre pour l’étude des déformations lentes des versants de montagne (glaciers et permafrost). Mémoire de fin d’étude, École Supérieure de Géodésie et Topographie, Le Mans, 51 pGoogle Scholar
  20. Diolaiuti G, Smiraglia C (2010) Changing glaciers in a changing climate: how vanishing geomorphosites have been driving deep changes in mountain landscapes and environments. Géomorphologie 2:131–152CrossRefGoogle Scholar
  21. Eggert DW, Fitzgibbon AW, Fisher RB (1998) Simultaneous registration of multiple range views for use in reverse engineering of CAD models. Comp Vis Im Underst 69:253–272CrossRefGoogle Scholar
  22. Fey C, Zangerl C, Haas F, Rutzinger M, Sailer R, Bremer M (2012) Rock slide deformation measurements with terrestrial laser scanning in inaccessible high mountain areas. Geophys Res Abstr 14:11944–1Google Scholar
  23. Francou B, Reynaud L (1992) 10 years of surficial velocities on a Rock glacier (Laurichard, French Alps). Permafr Periglac Process 3:209–213CrossRefGoogle Scholar
  24. Garavaglia V, Pelfini M, Bollati I (2010) The influence of climate change on glacier geomorphosites: the case of two Italian glaciers (Miage Glacier, Forni Glacier) investigated through dendrochronology. Géomorphologie 2:153–164CrossRefGoogle Scholar
  25. Ghiraldi L, Coaratza P, Marchetti M, Giardino M (2010) GIS and geomatics application for the evaluation and exploitation of Piemonte geomorphosites. In: Regolini-Bissig G, Reynard E (eds) Mapping geoheritage. Geovisions 35:97–113Google Scholar
  26. Giardino M, Perotti L, Carletti R, Russo S (2010) Creation and test of a mobile GIS application to support field data collection and mapping activities on geomorphosites. In: Regolini-Bissig G, Reynard E (eds) Mapping geoheritage. Geovisions 35:115–127Google Scholar
  27. Grandgirard V (1997) Géomorphologie, protection de la nature et gestion du paysage. Université de Fribourg, Thèse de Doctorat, 420 pGoogle Scholar
  28. Grandgirard V (1999) L’évaluation des géotopes. Geol Insubrica 4:66–69Google Scholar
  29. Haeberli W (2008) Changing view of changing glaciers. In: Orlove B, Wiegandt E, Luckman BH (eds) Darkening peaks: glacier retreat, science and society. University of California Press, Los Angeles, pp 23–32Google Scholar
  30. Haeberli W, Hallet B, Arenson L, Elconin R, Humlum O, Kaab A (2006) Permafrost creep and rock glacier dynamics. Permafr Periglac Process 17:189–214CrossRefGoogle Scholar
  31. Hartmeyer I, Keuschnig M, Delleske R, Schrott L (2012) Reconstruction of the Magnetkoepfl rockfall event—detecting rock fall release zones using terrestrial laser scanning, Hohe Tauern, Austria. Geophys Res Abs 14:12488Google Scholar
  32. Heritage G, Large A (2009) Laser scanning for the environmental sciences. Wiley, Chichester, 288 pCrossRefGoogle Scholar
  33. Jaboyedoff M, Oppikofer T, Locat A, Locat J, Turmel D, Robitaille D, Demers D, Locat P (2009) Use of ground-based LIDAR for the analysis of retrogressive landslides in sensitive clay and of rotational landslides in river banks. Can Geotech J 46:1379–1390CrossRefGoogle Scholar
  34. Jaboyedoff M, Oppikofer T, Abellan A, Derron MH, Loye A, Metzger R, Pedrazzini A (2012) Use of LiDAR in landslide investigations: a review. Nat Hazards 61:5–28CrossRefGoogle Scholar
  35. Kellerer-Pirklbauer A, Lieb GK, Avian M, Gspurning J (2008) The response of partially debris-covered valley glaciers to climate change: the example of the Pasterze Glacier (Austria) in the period 1964 to 2006. Geogr Ann A 90:269–285CrossRefGoogle Scholar
  36. Kenner R, Phillips M, Danioth C, Denier C, Thee P, Zgraggen A (2011) Investigation of rock and ice loss in a recently deglaciated mountain rock wall using terrestrial laserscanning: Gemsstock, Swiss Alps. Cold Reg Sci Tech 67:157–164CrossRefGoogle Scholar
  37. Maillard B, Reynard E (2011) Inventaire des géomorphosites des vallées d’Entrement et de Ferret (Valais) et propositions de valorisations. In: Lambiel C, Reynard E, Scapozza C (eds) La géomorphologie alpine: entre patrimoine et contraintes. Geovisions 36:1–17Google Scholar
  38. Martelli D, Alberto W, Tamburini A (2008) Rilievi laser scanner nell’ambito del Progetto Interreg IIIA Alcotra n. 196 PERMAdataROC. IMAGEO S.r.l., unpublished reportGoogle Scholar
  39. Oppikofer T, Jaboyedoff M, Keusen HR (2008) Collapse at the eastern Eiger flank in the Swiss Alps. Nat Geosci 1:531–535CrossRefGoogle Scholar
  40. Otto JC, Keuschnig M, Götz J, Marbach M, Schrott L (2012) Detection of mountain permafrost by combining high resolution surface and subsurface information—an example from the Glatzbach catchment, Austrian Alps. Geogr Ann A 94:43–57CrossRefGoogle Scholar
  41. Panizza M (2001) Geomorphosites: concepts, methods and example of geomorphological survey. Chin Sci Bull 46:4–6CrossRefGoogle Scholar
  42. Panizza M, Piacente S (1993) Geomorphological assets evaluation. Z Geomorphol 87:13–18Google Scholar
  43. Rabatel A, Deline P, Jaillet S, Ravanel L (2008) Rock falls in high-alpine rock walls quantified by terrestrial LiDAR measurements: a case study in the Mont Blanc area. Geophys Res Lett 35, L10502CrossRefGoogle Scholar
  44. Ravanel L, Deline P (2008) La face ouest des Drus (massif du Mont-Blanc): évolution de l’instabilité d’une paroi rocheuse dans la haute montagne alpine depuis la fin du Petit Age Glaciaire. Géomorphologie 4:261–272Google Scholar
  45. Ravanel L, Deline P, Jaillet S (2010) Quantification des éboulements/écroulements dans les parois de la haute montagne alpine : quatre années de laserscanning terrestre dans le massif du Mont-Blanc. Rev Fr Photogram Télédétec 192:58–65Google Scholar
  46. Ravanel L, Deline P, Jaillet S (2011) Quatre années de suivi de la morphodynamique des parois rocheuses du massif du Mont Blanc par laserscanning terrestre. Collection EDYTEM 12:69–76Google Scholar
  47. Ravanel L, Deline P, Lambiel C, Vincent C (2013) Instability of a highly vulnerable high alpine rock ridge: the lower Arête des Cosmiques (Mont Blanc massif, France). Geogr Ann A. doi: 10.1111/geoa.12000 Google Scholar
  48. Regolini G (2012) Cartographier les géomorphosites. Géovisions 38:294Google Scholar
  49. Reynard E (2005) Géomorphosites et paysages. Géomorphologie 3:181–188CrossRefGoogle Scholar
  50. Reynard E (2009) Geomorphosites: definitions and characteristics. In: Reynard E, Coratza P, Regolini-Bissig G (eds) Geomorphosites. München, Pfeil Verlag, pp 63–71Google Scholar
  51. Shan J, Toth CK (2009) Topographic laser ranging and scanning: principles and processing. CRC Press, New York, USA, 590 pGoogle Scholar
  52. Slob S, Hack R (2004) 3D terrestrial laser scanning as a new field measurement and monitoring technique. In: Hack R, Azzam R, Charlier R (eds) Engineering geology for infrastructure planning in Europe. A European perspective. Lecture note in Earth Sciences. Springer, Berlin / Heidelberg, pp 179–190CrossRefGoogle Scholar
  53. Smith BJ, Orford JD, Betts NL (2009) Management challenges of a dynamic geomorphosite: climate change and the Giant’s Causeway Heritage Site. In: Reynard E, Coratza P, Regolini-Bissig G (eds) Geomorphosites. München, Pfeil Verlag, pp 145–162Google Scholar
  54. Viero A, Furlanis S, Squarzoni C, Teza G, Galgaro A, Gianolla P (2012) Dynamics and mass balance of the 2007 Cima Una rockfall (Eastern Alps, Italy). Landslides. doi: 10.1007/s10346-012-0338-4 Google Scholar
  55. Young AP, Ashford SA (2006) Application of airbone LiDAR for seacliff volumetric change and beach-sediment budget contribution. J Coast Res 22:307–318CrossRefGoogle Scholar

Copyright information

© The European Association for Conservation of the Geological Heritage 2014

Authors and Affiliations

  1. 1.EDYTEM, University of SavoieCNRSLe Bourget-du-LacFrance
  2. 2.Institute of Geography and DurabilityUniversity of LausanneLausanneSwitzerland

Personalised recommendations