Advertisement

Toward an Expressive Bipedal Robot: Variable Gait Synthesis and Validation in a Planar Model

  • Umer HuzaifaEmail author
  • Catherine Maguire
  • Amy LaViers
Article

Abstract

Humans are efficient, yet expressive in their motion. Human walking behaviors can be used to walk across a great variety of surfaces without falling and to communicate internal state to other humans through variable gait styles. This provides inspiration for creating similarly expressive bipedal robots. To this end, a framework is presented for stylistic gait generation in a compass-like under-actuated planar biped model. The gait design is done using model-based trajectory optimization with variable constraints. For a finite range of optimization parameters, a large set of 360 gaits can be generated for this model. In particular, step length and cost function are varied to produce distinct cyclic walking gaits. From these resulting gaits, 6 gaits are identified and labeled, using embodied movement analysis, with stylistic verbs that correlate with human activity, e.g., “lope” and “saunter”. These labels have been validated by conducting user studies in Amazon Mechanical Turk and thus demonstrate that visually distinguishable, meaningful gaits are generated using this framework. This lays groundwork for creating a bipedal humanoid with variable socially competent movement profiles.

Keywords

Biped locomotion Human-like natural motions Stylistic motion variation synthesis Expressivity Optimization Embodied movement analysis 

Notes

Acknowledgements

This work was conducted under IRB #17697 and funded by National Science Foundation (NSF) Grant #1701295. The authors would like to thank Prof. Hae Won Park for useful discussions about the controller design and trajectory optimization and Prof. Joshua Schultz for useful discussions about how this control scheme might be implemented through a physical mechanism.

Compliance with Ethical Standards

Conflict of Interest

A LaViers owns stock in AE Machines, an automation software company.

Supplementary material

Supplementary material 1 (mp4 4396 KB)

References

  1. 1.
    Breazeal CL (2000) Sociable machines: expressive social exchange between humans and robots. PhD dissertation, Massachusetts Institute of TechnologyGoogle Scholar
  2. 2.
    Bartl A, Bosch S, Brandt M, Dittrich M, Lugrin B (2016) The influence of a social robot’s persona on how it is perceived and accepted by elderly users. In: Agah A, Cabibihan J-J, Howard AM, Salichs MA, He H (eds) Social robotics. Springer, Cham, pp 681–691CrossRefGoogle Scholar
  3. 3.
    Hamacher A, Bianchi-Berthouze N, Pipe AG, Eder K (2016) Believing in BERT: using expressive communication to enhance trust and counteract operational error in physical human–robot interaction. In: 2016 25th IEEE international symposium on robot and human interactive communication (RO-MAN), Aug 2016, pp 493–500Google Scholar
  4. 4.
    Leite I, Castellano G, Pereira A, Martinho C, Paiva A (2014) Empathic robots for long-term interaction. Int J Soc Robot 6(3):329–341.  https://doi.org/10.1007/s12369-014-0227-1 CrossRefGoogle Scholar
  5. 5.
    Rossi S, Staffa M, Tamburro A (2018) Socially assistive robot for providing recommendations: comparing a humanoid robot with a mobile application. Int J Soc Robot 10(2):265–278.  https://doi.org/10.1007/s12369-018-0469-4 CrossRefGoogle Scholar
  6. 6.
    Kuroki Y, Fujita M, Ishida T, Nagasaka K, Yamaguchi J (2003) A small biped entertainment robot exploring attractive applications. In: IEEE international conference on robotics and automation, 2003. Proceedings. ICRA’03. vol 1. IEEE, pp 471–476Google Scholar
  7. 7.
    Oh J-H, Hanson D, Kim W-S, Han Y, Kim J-Y, Park I-W (2006) Design of android type humanoid robot Albert Hubo. In: 2006 IEEE/RSJ international conference on intelligent robots and systems, pp 1428–1433Google Scholar
  8. 8.
    Becker-Asano C, Ishiguro H (2011) Evaluating facial displays of emotion for the android robot Geminoid F. In: 2011 IEEE workshop on affective computational intelligence (WACI), April 2011, pp 1–8Google Scholar
  9. 9.
    Kishi T, Otani T, Endo N, Kryczka P, Hashimoto K, Nakata K, Takanishi A (2012) Development of expressive robotic head for bipedal humanoid robot. In: 2012 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 4584–4589Google Scholar
  10. 10.
    Kishi T, Otani T, Endo N, Kryczka P, Hashimoto K, Nakata K, Takanishi A (2013) Development of expressive robotic head for bipedal humanoid robot with wide moveable range of facial parts, facial color. In: Padois V, Bidaud P, Khatib O (eds) Romansy 19—robot design, dynamics and control. Springer, Vienna, pp 151–158CrossRefGoogle Scholar
  11. 11.
    Liu C, Ham J, Postma E, Midden C, Joosten B, Goudbeek M (2013) Representing affective facial expressions for robots and embodied conversational agents by facial landmarks. Int J Soc Robot 5(4):619–626.  https://doi.org/10.1007/s12369-013-0208-9 CrossRefGoogle Scholar
  12. 12.
    Asheber WT, Lin C-Y, Yen SH (2016) Humanoid head face mechanism with expandable facial expressions. Int J Adv Robot Syst 13(1):29.  https://doi.org/10.5772/62181 CrossRefGoogle Scholar
  13. 13.
    Stephens-Fripp B, Naghdy F, Stirling D, Naghdy G (2017) Automatic affect perception based on body gait and posture: a survey. Int J Soc Robot 9(5):617–641.  https://doi.org/10.1007/s12369-017-0427-6 CrossRefGoogle Scholar
  14. 14.
    Cutting JE, Kozlowski LT (1977) Recognizing friends by their walk: gait perception without familiarity cues. Bull Psychon Soc 9(5):353–356.  https://doi.org/10.3758/BF03337021 CrossRefGoogle Scholar
  15. 15.
    Davis JW (2001) Visual categorization of children and adult walking styles. In: International conference on audio-and video-based biometric person authentication. Springer, Berlin, pp 295–300Google Scholar
  16. 16.
    Blake R, Shiffrar M (2007) Perception of human motion. Ann Rev Psychol 58:47–73CrossRefGoogle Scholar
  17. 17.
    Rosenthal-von der Pütten AM, Krämer NC, Herrmann J (2018) The effects of humanlike and robot-specific affective nonverbal behavior on perception, emotion, and behavior. Int J Soc Robot 10(5):569–582.  https://doi.org/10.1007/s12369-018-0466-7 CrossRefGoogle Scholar
  18. 18.
    Van den Stock J, Righart R, De Gelder B (2007) Body expressions influence recognition of emotions in the face and voice. Emotion 7(3):487–494CrossRefGoogle Scholar
  19. 19.
    McGeer T (1990) Passive dynamic walking. Int J Robot Res 9(2):62–82CrossRefGoogle Scholar
  20. 20.
    Collins SH, Wisse M, Ruina A (2001) A three-dimensional passive-dynamic walking robot with two legs and knees. Int J Robot Res 20(7):607–615CrossRefGoogle Scholar
  21. 21.
    Kuo AD (2007) Choosing your steps carefully. IEEE Robot Autom Mag 14(2):18–29CrossRefGoogle Scholar
  22. 22.
    Vukobratović M, Borovac B (2005) Zero-moment point—thirty five years of its life. Int J Humanoid Robot 1(1): 157–173. http://www.cs.cmu.edu/~cga/legs/vukobratovic.pdf
  23. 23.
    Chestnutt J, Lau M, Cheung G, Kuffner J, Hodgins J, Kanade T (2005) Footstep planning for the Honda ASIMO humanoid. In: Proceedings of the 2005 IEEE international conference on robotics and automation, 2005. ICRA 2005, pp 629–634Google Scholar
  24. 24.
    Feng S, Whitman E, Xinjilefu X, Atkeson CG (2014) Optimization based full body control for the atlas robot. In: 2014 14th IEEE-RAS international conference on humanoid robots (humanoids), pp 120–127Google Scholar
  25. 25.
    Gouaillier D, Hugel V, Blazevic P, Kilner C, Monceaux J, Lafourcade P, Marnier B, Serre J, Maisonnier B (2009) Mechatronic design of NAO humanoid. In: IEEE international conference on robotics and automation, pp 769–774Google Scholar
  26. 26.
    Bhounsule PA, Cortell J, Grewal A, Hendriksen B, Karssen JD, Paul C, Ruina A (2014) Low-bandwidth reflex-based control for lower power walking: 65 km on a single battery charge. Int J Robot Res 33(10):1305–1321CrossRefGoogle Scholar
  27. 27.
    Spong MW, Bullo F (2002) Controlled symmetries and passive walking. In: IFAC triennial World CongressGoogle Scholar
  28. 28.
    Wisse M, Keliksdal G, Frankenhyyzen JV, Moyer B (2007) Passive-based walking robot. IEEE Robot Autom Mag 14(2):52–62CrossRefGoogle Scholar
  29. 29.
    Hobbelen D, de Boer T, Wisse M (2008) System overview of bipedal robots Flame and TUlip: tailor-made for limit cycle walking. In: 2008 IEEE/RSJ international conference on intelligent robots and systems, pp 2486–2491Google Scholar
  30. 30.
    Goswami A, Espiau B, Keramane A (1997) Limit cycles in a passive compass gait biped and passivity-mimicking control laws. Auton Robots 4(3):273–286CrossRefGoogle Scholar
  31. 31.
    Ramezani A (2013) Feedback control design for MARLO, a 3D-bipedal robot. PhD dissertation, The University of MichiganGoogle Scholar
  32. 32.
    Grizzle J, Hurst J, Morris B, Park H-W, Sreenath K (2009) MABEL, a new robotic bipedal walker and runner. In: American control conference, ACC’09. pp 2030–2036Google Scholar
  33. 33.
    Sinnet RW, Jiang S, Ames AD (2014) A human-inspired framework for bipedal robotic walking design. Int J Biomechatron Biomed Robot 3(1):20–41CrossRefGoogle Scholar
  34. 34.
    Hereid A, Cousineau EA, Hubicki CM, Ames AD (2016) 3D dynamic walking with underactuated humanoid robots: a direct collocation framework for optimizing hybrid zero dynamics. In: 2016 IEEE international conference on robotics and automation (ICRA), May 2016, pp 1447–1454Google Scholar
  35. 35.
    Huang R, Cheng H, Chen Y, Chen Q, Lin X, Qiu J (2016) Optimisation of reference gait trajectory of a lower limb exoskeleton. Int J Soc Robot 8(2):223–235.  https://doi.org/10.1007/s12369-015-0334-7 CrossRefGoogle Scholar
  36. 36.
    Da X, Harib O, Hartley R, Griffin B, Grizzle JW (2016) From 2D design of underactuated bipedal gaits to 3D implementation: walking with speed tracking. IEEE Access 4:3469–3478CrossRefGoogle Scholar
  37. 37.
    Motahar MS, Veer S, Poulakakis I (2016) Composing limit cycles for motion planning of 3D bipedal walkers. In: 2016 IEEE 55th conference on decision and control (CDC). pp 6368–6374Google Scholar
  38. 38.
    Or J (2012) Computer simulations of a humanoid robot capable of walking like fashion models. IEEE Trans Syst Man Cybern Part C (Appl Rev) 42(2):241–248CrossRefGoogle Scholar
  39. 39.
    Kwon O, Park JH (2003) Gait transitions for walking and running of biped robots. In: 2003 IEEE international conference on robotics and automation (Cat. No. 03CH37422), vol 1, Sept 2003, pp 1350–1355Google Scholar
  40. 40.
    Morimoto J, Atkeson CG (2007) Learning biped locomotion. IEEE Robot Autom Mag 14(2):41–51CrossRefGoogle Scholar
  41. 41.
    Yin K, Loken K, van de Panne M (2007) Simbicon: Simple biped locomotion control. ACM Trans Graph, 26(3), Article 105Google Scholar
  42. 42.
    Venture G, Kadone H, Zhang T, Grèzes J, Berthoz A, Hicheur H (2014) Recognizing emotions conveyed by human gait. Int J Soc Robot 6(4):621–632CrossRefGoogle Scholar
  43. 43.
    Etemad SA, Arya A (2016) Expert-driven perceptual features for modeling style and affect in human motion. IEEE Trans Hum Mach Syst 46(4):534–545CrossRefGoogle Scholar
  44. 44.
    Kavafoglu Z, Kavafoglu E, Cimen G, Capin T, Gurcay H (2016) Style-based biped walking control. Visual Comput. Dec 2016 (online). https://doi.org/10.1007/s00371-016-1338-5
  45. 45.
    Asano F, Yamakita M (2001) Virtual gravity and coupling control for robotic gait synthesis. IEEE Trans Syst Man Cybern Part A Syst Hum 31(6):737–745CrossRefGoogle Scholar
  46. 46.
    Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5(11):1226CrossRefGoogle Scholar
  47. 47.
    Gallup AC, Hale JJ, Sumpter DJ, Garnier S, Kacelnik A, Krebs JR, Couzin ID (2012) Visual attention and the acquisition of information in human crowds. Proc Natl Acad Sci 109(19):7245–7250CrossRefGoogle Scholar
  48. 48.
    Hortensius R, Cross ES (2018) From automata to animate beings: the scope and limits of attributing socialness to artificial agents. Mar 2018 (online). https://psyarxiv.com/sr2c8
  49. 49.
    Heimerdinger M, LaViers A (2019) Modeling the interactions of context and style on affect in motion perception: stylized gaits across multiple environmental contexts. Int J Soc Robot (online). https://doi.org/10.1007/s12369-019-00514-1
  50. 50.
    Studd K, Cox L (2013) Everybody is a body. Dog Ear Publishing, IndianapolisGoogle Scholar
  51. 51.
    Bartenieff I, Lewis D (1980) Body movement: coping with the environment. Gordon and Breach Science Publishers, New YorkGoogle Scholar
  52. 52.
    Nicholson G (2008) The lost art of walking: the history, science, philosophy, and literature of pedestrianism. PenguinGoogle Scholar
  53. 53.
    Synonyms and antonyms of walk (online). https://www.merriam-webster.com/thesaurus/walk
  54. 54.
    Goswami A, Thuilot B, Espiau B (1996) Compass-like biped robot part I: stability and bifurcation of passive gaits. PhD dissertation, INRIAGoogle Scholar
  55. 55.
    Grizzle JW, Plestan F, Abba G (1999) Poincare’s method for systems with impulse effects: application to mechanical biped locomotion. In: Proceedings of the 38th IEEE conference on decision and control, 1999, vol 4. pp 3869–3876Google Scholar
  56. 56.
    Westervelt ER, Grizzle JW, Chevallereau C, Choi JH, Morris B (2007) Feedback control of dynamic bipedal robot locomotion, vol 28. CRC Press, Boca RatonCrossRefGoogle Scholar
  57. 57.
    Hurmuzlu Y, Marghitu DB (1994) Rigid body collisions of planar kinematic chains with multiple contact points. Int J Robot Res 13(1):82–92.  https://doi.org/10.1177/027836499401300106 CrossRefGoogle Scholar
  58. 58.
    Betts JT (2009) Practical methods for optimal control and estimation using nonlinear programming, 2nd edn. Cambridge University Press, New YorkzbMATHGoogle Scholar
  59. 59.
    Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57.  https://doi.org/10.1007/s10107-004-0559-y MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Patterson MA, Rao AV (2014) GPOPS-II: a MATLAB software for solving multiple-phase optimal control problems using hp-adaptive gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans Math Softw (TOMS) 41(1):1MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Kelly MP. OptimTraj user’s guide, Version 1.5 (online). https://github.com/MatthewPeterKelly/OptimTraj. Accessed 9 Apr 2019
  62. 62.
    Drag (2019) Oxford dictionary. Retrieved from https://en.oxforddictionaries.com/definition/drag
  63. 63.
    (online). http://sentence.yourdictionary.com/lope. Accessed 9 Apr 2019
  64. 64.
  65. 65.
  66. 66.
    Kellogg E (1892) John Godsoe’s legacy, ser. American Boy’s series. Lee and Shepard 1892 (online). https://books.google.com/books?id=Gfo0AAAAMAAJ. Accessed 9 Apr 2019
  67. 67.
    Whitnell B (1982) The ring of bells. Coward, McCann and Geoghegan 1982 (online). https://books.google.com/books?id=uV7qBxLFg5IC. Accessed 9 Apr 2019
  68. 68.
    Qualtrics (online). https://www.qualtrics.com/. Accessed 9 Apr 2019
  69. 69.
    Amazon mechanical turk (online). http://www.mturk.com. Accessed 9 Apr 2019
  70. 70.
    Tamuz O, Liu C, Belongie S, Shamir O, Kalai AT (2011) Adaptively learning the crowd kernel. arXiv preprint arXiv:1105.1033
  71. 71.
    Huzaifa U, Bernier C, Calhoun Z, Kohout C, Heddy J, Libowitz B, Moenning A, Ye J, Maguire C, LaViers A (2016) Embodied movement strategies for development of a core-located actuation walker. In: IEEE BioRobGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignChampaignUSA
  2. 2.Laban/Bartenieff Institute of Movement Studies (LIMS)BrooklynUSA

Personalised recommendations