Advertisement

Improved Cognitive Control in Presence of Anthropomorphized Robots

  • Nicolas SpatolaEmail author
  • Clément Belletier
  • Pierre Chausse
  • Maria Augustinova
  • Alice Normand
  • Vincent Barra
  • Ludovic FerrandEmail author
  • Pascal Huguet
Article
  • 48 Downloads

Abstract

There is evidence that attentional control mechanisms in humans can be boosted in performance contexts involving the presence of other human agents, compared with isolation. This phenomenon was investigated here with the presence of artificial agents, that is, humanoid robots in the context of the well-known Stroop task requiring attentional control for successful performance. We expected and found beneficial effects of robotic presence (compared with isolation) on standard Stroop performance and response conflict resolution (a specific component of Stroop performance) exclusively when robotic presence triggered anthropomorphic inferences based on prior verbal interactions with the robot (a social robot condition contrasted with the presence of the same robot without any prior interactions). Participants’ anthropomorphic inferences about the social robot actually mediated its influence on attentional control, indicating the social nature of this influence. These findings provide further reasons to pay special attention to human–robot interactions and open new avenues of research in social robotics.

Keywords

Social facilitation Anthropomorphized robots Human–robot interaction Cognitive control Stroop task 

Notes

Acknowledgements

This work was supported by a Grant (Social_Robot_2017-2018) from the Maison des Sciences de l’Homme (MSH), Clermont-Ferrand, France.

Funding

This study was funded by a Grant (Social_Robot_2017-2018) awarded to all authors from the Maison des Sciences de l’Homme (MSH), Clermont-Ferrand, France.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Statement

This study was approved by the Clermont-Ferrand Sud-Est 6 Statutory Ethics Committee (Comité de Protection des Personnes (CPP) Sud-Est 6, France; Authorization # 2016/CE 105) and was carried out in accordance with the provisions of the World Medical Association Declaration of Helsinki.

Open Practices

Mean reaction time data (for each participant and each condition) are publicly available via the Open Science Framework and can be accessed at https://osf.io/38qg7/.

References

  1. 1.
    Brooks RA (2002) Flesh and machines. How robots will change us. Pantheon Books, New YorkGoogle Scholar
  2. 2.
    Kanda T, Hirano T, Eaton D, Ishiguro H (2004) Interactive robots as social partners and peer tutors for children: a field trial. Hum Comput Interact 19:61–84.  https://doi.org/10.1207/s15327051hci1901&2_4 CrossRefGoogle Scholar
  3. 3.
    Riether N, Hegel F, Wrede B, Horstmann G (2012) Social facilitation with social robots? In: Proceedings of the seventh annual ACM/IEEE international conference on human–robot interaction—HRI’12, pp 41–18Google Scholar
  4. 4.
    Herberg JS, Feller S, Yengin I, Saerbeck M (2015) Robot watchfulness hinders learning performance. In: Proceedings—IEEE international workshop on robot and human interactive communication, pp 153–160Google Scholar
  5. 5.
    Edwards C, Edwards A, Spence PR, Westerman D (2016) Initial interaction expectations with robots: testing the human-to-human interaction script. Commun Stud 67:227–238.  https://doi.org/10.1080/10510974.2015.1121899 CrossRefGoogle Scholar
  6. 6.
    Triplett (1898) The dynamogenic factors in pacemaking and competition. Am J Psychol 9:507–533CrossRefGoogle Scholar
  7. 7.
    Bond CF, Titus LJ (1983) Social facilitation: a meta-analysis of 241 studies. Psychol Bull 94:265–292.  https://doi.org/10.1037/0033-2909.94.2.265 CrossRefGoogle Scholar
  8. 8.
    Geen RG, Gange JJ (1977) Drive theory of social facilitation: twelve years of theory and research. Psychol Bull 84:1267–1288.  https://doi.org/10.1037/0033-2909.84.6.1267 CrossRefGoogle Scholar
  9. 9.
    Guerin B (1983) Social facilitation and social monitoring: a test of three models. Br J Soc Psychol 22:203–214.  https://doi.org/10.1111/j.2044-8309.1983.tb00585.x CrossRefGoogle Scholar
  10. 10.
    Zajonc RB (1965) Social facilitation. Science 149:269–274.  https://doi.org/10.1126/science.149.3681.269 CrossRefGoogle Scholar
  11. 11.
    Hull CL (1952) A behavior system: an introduction to behavior theory concerning the individual organism. Yale University Press, New HavenGoogle Scholar
  12. 12.
    McFall SR, Jamieson JP, Harkins SG (2009) Testing the mere effort account of the evaluation–performance relationship. J Pers Soc Psychol 96:135–154.  https://doi.org/10.1037/a0012878 CrossRefGoogle Scholar
  13. 13.
    Baron RS (1986) Distraction-conflict theory: progress and problems. Adv Exp Soc Psychol 19:1–40.  https://doi.org/10.1016/S0065-2601(08)60211-7 Google Scholar
  14. 14.
    Belletier C, Camos V (2018) Does the experimenter presence affect working memory?. N Y Acad Sci, Ann.  https://doi.org/10.1111/nyas.13627 CrossRefGoogle Scholar
  15. 15.
    Belletier C, Davranche K, Tellier IS, Dumas F, Vidal F, Hasbroucq T, Huguet P (2015) Choking under monitoring pressure: being watched by the experimenter reduces executive attention. Psychon Bull Rev 22:1410–1416.  https://doi.org/10.3758/s13423-015-0804-9 CrossRefGoogle Scholar
  16. 16.
    Huguet P, Galvaing MP, Monteil JM, Dumas F (1999) Social presence effects in the Stroop task: further evidence for an attentional view of social facilitation. J Pers Soc Psychol 77:1011–1024.  https://doi.org/10.1037/0022-3514.77.5.1011 CrossRefGoogle Scholar
  17. 17.
    Normand A, Bouquet CA, Croizet JC (2014) Does evaluative pressure make you less or more distractible? Role of top-down attentional control over response selection. J Exp Psychol Gen 143:1097–1111.  https://doi.org/10.1037/a0034985 CrossRefGoogle Scholar
  18. 18.
    Haslam N, Loughnan S (2014) Dehumanization and infrahumanization. Annu Rev Psychol 65:399–423CrossRefGoogle Scholar
  19. 19.
    Wühr P, Huestegge L (2010) The impact of social presence on voluntary and involuntary control of spatial attention. Soc Cogn 28:145–160.  https://doi.org/10.1521/soco.2010.28.2.145 CrossRefGoogle Scholar
  20. 20.
    Huguet P, Barbet I, Belletier C, Monteil JM, Fagot J (2014) Cognitive control under social influence in baboons. J Exp Psychol Gen 143:2067–2073.  https://doi.org/10.1037/xge0000026 CrossRefGoogle Scholar
  21. 21.
    Monfardini E, Redouté J, Hadj-Bouziane F, Hynaux C, Fradin J, Huguet P, Costes N, Meunier M (2016) Others’ Sheer presence boosts brain activity in the attention (but not the motivation) network. Cereb Cortex 26:2427–2439.  https://doi.org/10.1093/cercor/bhv067 CrossRefGoogle Scholar
  22. 22.
    Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662.  https://doi.org/10.1037/h0054651 CrossRefGoogle Scholar
  23. 23.
    MacLeod C (1991) Half a century of research on the Stroop effect: an integrative review. Psychol Bull 109:163–203CrossRefGoogle Scholar
  24. 24.
    Augustinova M, Ferrand L (2014) Automaticity of word reading: evidence from the semantic Stroop paradigm. Curr Dir Psychol Sci 23:343–348.  https://doi.org/10.1177/0963721414540169 CrossRefGoogle Scholar
  25. 25.
    Huguet P, Dumas F, Monteil JM (2004) Competing for a desired reward in the stroop task: when attentional control is unconscious but effective versus conscious but ineffective. Can J Exp Psychol 58:153–167CrossRefGoogle Scholar
  26. 26.
    Augustinova M, Ferrand L (2012) The influence of mere social presence on Stroop interference: new evidence from the semantically-based Stroop task. J Exp Soc Psychol 48:1213–1216.  https://doi.org/10.1016/j.jesp.2012.04.014 CrossRefGoogle Scholar
  27. 27.
    Klauer KC, Herfordt J, Voss A (2008) Social presence effects on the Stroop task: boundary conditions and an alternative account. J Exp Soc Psychol 44:469–476.  https://doi.org/10.1016/j.jesp.2007.02.009 CrossRefGoogle Scholar
  28. 28.
    Sharma D, Booth R, Brown R, Huguet P (2010) Exploring the temporal dynamics of social facilitation in the Stroop task. Psychon Bull Rev 17:52–58.  https://doi.org/10.3758/PBR.17.1.52 CrossRefGoogle Scholar
  29. 29.
    Augustinova M, Silvert L, Ferrand L, Llorca PM, Flaudias V (2015) Behavioral and electrophysiological investigation of semantic and response conflict in the Stroop task. Psychon Bull Rev 22:543–549.  https://doi.org/10.3758/s13423-014-0697-z CrossRefGoogle Scholar
  30. 30.
    Augustinova M, Silvert L, Spatola N, Ferrand L (2018) Further investigation of distinct components of Stroop interference and of their reduction by short response-stimulus intervals. Acta Psychol 189:54–62.  https://doi.org/10.1016/j.actpsy.2017.03.009 CrossRefGoogle Scholar
  31. 31.
    Augustinova M, Clarys D, Spatola N, Ferrand L (2018) Some further clarifications on age-related differences in Stroop interference. Psychon Bull Rev 25:767–774.  https://doi.org/10.3758/s13423-017-1427-0 CrossRefGoogle Scholar
  32. 32.
    Parris BA (2014) Task conflict in the Stroop task: when Stroop interference decreases as Stroop facilitation increases in a low task conflict context. Front Psychol 5:1182.  https://doi.org/10.3389/fpsyg.2014.01182 CrossRefGoogle Scholar
  33. 33.
    Tabachnik BG, Fidell LS (2007) Using multivariate statistics. Pearson/Ally & Bacon, BostonGoogle Scholar
  34. 34.
    Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191.  https://doi.org/10.3758/BF03193146 CrossRefGoogle Scholar
  35. 35.
    Christensen LB, Johnson RB, Turner LA (2010) Research methods, design, and analysis. Pearson Education Limited, LondonGoogle Scholar
  36. 36.
    Duffy BR (2003) Anthropomorphism and the social robot. Robot Auton Syst 42:177–190CrossRefzbMATHGoogle Scholar
  37. 37.
    Hanington B, Martin B (2012) Universal methods of design: 100 ways to research complex problems, develop innovative ideas, and design effective solutions. Rockport Publishers, BeverlyGoogle Scholar
  38. 38.
    Nomura T, Suzuki T, Kanda T, Kato K (2006) Measurement of anxiety toward robots. In: Proceedings—IEEE international workshop on robot and human interactive communication, pp 372–377Google Scholar
  39. 39.
    Augustinova M, Ferrand L (2012) Suggestion does not de-automatize word reading: evidence from the semantically based Stroop task. Psychon Bull Rev 19:521–527.  https://doi.org/10.3758/s13423-012-0217-y CrossRefGoogle Scholar
  40. 40.
    Spatola N, Belletier C, Normand A, Chausse P, Monceau S, Augustinova A, Barra V, Huguet P, Ferrand L (2018) Not as bad as it seems: when the presence of a threatening humanoid robot improves human performance. Sci Robot 3:eaat5843.  https://doi.org/10.1126/scirobotics.aat5843 CrossRefGoogle Scholar
  41. 41.
    Nass C, Moon Y (2000) Machines and mindlessness: social responses to computers. J Soc Issues 56:81–103CrossRefGoogle Scholar
  42. 42.
    Kollar I, Fischer F, Hesse FW (2006) Collaboration scripts—a conceptual analysis. Educ Psychol Rev 18:159–185.  https://doi.org/10.1007/s10648-006-9007-2 CrossRefGoogle Scholar
  43. 43.
    Reeves B, Nass C (1996) The media equation: how people treat computers, television, and new media like real people and places. Cambridge University Press, CambridgeGoogle Scholar
  44. 44.
    Sallnäs E-L, Rassmus-Gröhn K, Sjöström C (2000) Supporting presence in collaborative environments by haptic force feedback. ACM Trans Comput Hum Interact 7:461–476CrossRefGoogle Scholar
  45. 45.
    Breazeal C (2004) Social interactions in HRI: the robot view. IEEE Trans Syst Man Cybern Part C Appl Rev 34:181–186.  https://doi.org/10.1109/TSMCC.2004.826268 CrossRefGoogle Scholar
  46. 46.
    Chaminade T, Franklin DW, Oztop E, Cheng G (2005) Motor interference between humans and humanoid robots: effect of biological and artificial motion. In: Proceedings of 2005 4th IEEE international conference on development and learning, pp 96–101Google Scholar
  47. 47.
    Saygin AP, Chaminade T, Ishiguro H, Driver J, Frith C (2012) The thing that should not be: predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Soc Cogn Affect Neurosci 7:413–422.  https://doi.org/10.1093/scan/nsr025 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Université Clermont Auvergne, CNRS, LAPSCOClermont-FerrandFrance
  2. 2.Laboratoire Psychologie du Développement CognitifUniversité de FribourgFribourgSwitzerland
  3. 3.CRFDP (EA 7475)Université de Rouen NormandieRouenFrance
  4. 4.Université Clermont Auvergne, CNRS, LIMOSClermont-FerrandFrance

Personalised recommendations