International Journal of Social Robotics

, Volume 9, Issue 2, pp 293–307 | Cite as

Acceptance of Social Robots by Elder People: Does Psychosocial Functioning Matter?

  • Stefanie Baisch
  • Thorsten Kolling
  • Arthur Schall
  • Saskia Rühl
  • Stefanie Selic
  • Ziyon Kim
  • Holger Rossberg
  • Barbara Klein
  • Johannes Pantel
  • Frank Oswald
  • Monika Knopf


This study aims at investigating the relevance of psychosocial functioning for the acceptance of social robots by elder people in the context of everyday functioning. It was assumed that the level of psychosocial functioning either hinders or promotes robot acceptance, depending on the fit between elder people’s level of everyday functioning and the demands imposed by the robot (user–technology fit). To investigate this assumption, two social robots imposing different demands on the user, i.e., the easy-to-handle therapeutic robot Paro (low demands) and the less intuitive telepresence robot Giraff (high demands), were introduced successively to \(N=29\) cognitively and physically healthy elder people. To implement different levels of user–technology fit, participants rated their intention to use each robot for both a scenario of high and a scenario of low everyday functioning. Psychosocial functioning was assessed with emotional loneliness, depressive mood and life satisfaction as indicators of psychological well-being, and social support as indicator of social resources. Results show that lower social support was associated with higher acceptance of the less intuitive robot Giraff in the high everyday functioning scenario (adequate user–technology fit). In the low everyday functioning scenario (poor fit), however, lower psychological well-being was associated with lower acceptance of Giraff. For the rather intuitive robot Paro (adequate user–technology fit regardless of the level of everyday functioning), lower life satisfaction was associated with lower acceptance in both everyday functioning scenarios. The findings show the importance of psychosocial variables for the acceptance of social robots by elder people and underline the relevance of the fit between user and technology. Moreover, they suggest a more intense consideration of complex psychological mechanisms and individual user characteristics in research on robot acceptance by elder people.


Companion-type robots Telepresence systems Robot acceptance User–technology fit Everyday functioning Psychosocial functioning 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


This research was funded by the German Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF), Project-No. 16SV6185.

Research Involving Humans

The study was approved by the local Ethics Committee and was conducted in line with the ethical standards of the American Psychological Association and the German Association of Psychology (Deutsche Gesellschaft für Psychologie e.V., DGPs). Informed consent was obtained from all participants.


  1. 1.
    Fausset CB, Mayer AK, Rogers WA, Fisk AD (2009) Understanding aging in place for older adults: a needs analysis. Hum Fac Ergon Soc 53:521–525. doi: 10.1177/154193120905300808 CrossRefGoogle Scholar
  2. 2.
    Oppenauer C (2009) Motivation and needs for technology use in old age. Gerontechnology 8:82–87. doi: 10.4017/gt.2009. CrossRefGoogle Scholar
  3. 3.
    Pew Research Center (2014) Older adults and technology use. Accessed 09 Nov 2016
  4. 4.
    Kristoffersson A, Coradeschi S, Loutfi A (2013) A review of mobile robotic telepresence. Adv Hum Comput Interact. doi: 10.1155/2013/902316 Google Scholar
  5. 5.
    Kolling T, Haberstroh J, Kaspar R, Pantel J, Oswald F, Knopf M (2013) Evidence and deployment-based research into care for the elderly using emotional robots. Psychological, methodological and cross-cultural facets. GeroPsych 26:83–88. doi: 10.1024/1662-9647/a000084 CrossRefGoogle Scholar
  6. 6.
    Wahl H-W, Iwarsson S, Oswald F (2012) Aging well and the environment: toward an integrative model and a research agenda for the future. Gerontologist 52:306–313. doi: 10.1093/geront/gnr154 CrossRefGoogle Scholar
  7. 7.
    Broekens J, Heerink M, Rosendahl H (2009) Assistive social robots in elderly care: a review. Gerontechnology 8:94–103. doi: 10.4017/gt.2009. CrossRefGoogle Scholar
  8. 8.
    Cesta A, Cortellessa G, Orlandini A, Tiberio L (2012) Addressing the long-term evaluation of a telepresence robot for the elderly. In: Filipe J, Fred A (eds) Proceedings of the 4th international conference on agents and artificial intelligence, Portugal, pp 652–663Google Scholar
  9. 9.
    Moyle W, Jones C, Cooke M, O’Dwyer S, Sung B, Drummond S (2014) Connecting the person with dementia and family: a feasibility study of a telepresence robot. BMC Geriatr. doi: 10.1186/1471-2318-14-7 Google Scholar
  10. 10.
    De Graaf MM, Ben Allouch S (2014) Evaluation of a socially assistive robot in eldercare. Workshop paper presented at the international conference on human–robot interaction, Bielefeld. Accessed 09 Nov 2016
  11. 11.
    Hutson S, Lim SL, Bentley PJ, Bianchi-Berthouze N, Bowling A (2011) Investigating the suitability of social robots for the wellbeing of the elderly. Lect Notes Comput Sc 6975:578–587. doi: 10.1007/978-3-642-24600-5_61 CrossRefGoogle Scholar
  12. 12.
    Taggart W, Turkle S, Kidd CD (2005) An interactive robot in a nursing home: Preliminary remarks. In: Proceedings of the CogSci-2005 workshop toward social mechanisms of android science, Stresa, pp 56–61. Accessed 09 Nov 2016
  13. 13.
    Beer JM, Takayama L (2011) Mobile remote presence systems for older adults: acceptance, benefits, and concerns. In: Proceedings of the 6th international conference on human–robot interaction, New York, pp 19-26. doi: 10.1145/1957656.1957665
  14. 14.
    Gonzalez-Jimenez J, Galindo C, Gutierrez-Castaneda C (2013) Evaluation of a telepresence robot for the elderly: a Spanish experience. Lect Notes Comput Sc 7930:141–150. doi: 10.1007/978-3-642-38637-4_15 CrossRefGoogle Scholar
  15. 15.
    Beer JM, Prakash A, Mitzner TL, Rogers WA (2011) Understanding robot acceptance. Technical report (HFA-TR-1103) of the Georgia Institute of Technology. Accessed 09 Nov 2016
  16. 16.
    Smarr C-A, Prakash A, Beer JM, Mitzner TL, Kemp CC, Rogers WA (2012) Older adults’ preferences for and acceptance of robot assistiance for everyday living tasks. Hum Fac Ergon Soc 56:153–157. doi: 10.1177/1071181312561009 CrossRefGoogle Scholar
  17. 17.
    Flandorfer P (2012) Population ageing and socially assistive robots for elderly persons: the importance of sociodemographic factors for user acceptance. Int J Popul Res 2012:1–13. doi: 10.1155/2012/829835 CrossRefGoogle Scholar
  18. 18.
    Bouwhuis DG (2003) Design for person–environment interaction in older age: a gerontechnological perspective. Gerontechnology 2:232–246. doi: 10.4017/gt.2003. CrossRefGoogle Scholar
  19. 19.
    De Graaf MM, Ben Allouch S (2013) Exploring influencing variables for the acceptance of social robots. Robot Auton Syst 61:1476–1486. doi: 10.1016/j.robot.2013.07.007 CrossRefGoogle Scholar
  20. 20.
    Lee KM, Jung Y, Kim J, Kim SR (2006) Are physically embodied social agents better than disembodied social agents? The effects of physical embodiment, tactile interaction, and people’s loneliness in human–robot interaction. Int J Hum Comput Syst 64:962–973. doi: 10.1016/j.ijhcs.2006.05.002 CrossRefGoogle Scholar
  21. 21.
    Shibata T, Wada K, Ikeda Y, Sabanovic S (2009) Cross-cultural studies on subjective evaluation of a seal robot. Adv Robot 23:443–458. doi: 10.1163/156855309X408826 CrossRefGoogle Scholar
  22. 22.
    Bartneck C, Suzuki T, Kanda T, Nomura T (2006) The influence of people’s culture and prior experience with Aibo on their attitude towards robots. AI Soc 21:217–230. doi: 10.1007/s00146-006-0052-7 CrossRefGoogle Scholar
  23. 23.
    Scopelliti M, Giuliani MV, Fornara F (2005) Robots in a domestic setting: a psychological approach. Univers Access Inf 4:146–155. doi: 10.1007/s10209-005-0118-1 CrossRefGoogle Scholar
  24. 24.
    Frennert S, Östlund B, Eftring H (2012) Would granny let an assistive robot into her home? Lect Notes Comput Sc 7621:128–137. doi: 10.1007/978-3-642-34103-8_13 CrossRefGoogle Scholar
  25. 25.
    Frennert S, Eftring H, Östlund B (2013) What older people expect of robots: a mixed methods approach. Lect Notes Comput Sc 8239:19–29. doi: 10.1007/978-3-319-02675-6_3 CrossRefGoogle Scholar
  26. 26.
    Stafford RQ, MacDonald BA, Jayawardena C, Wegner DM, Broadbent E (2013) Does the robot have a mind? Mind perception and attitudes towards robots predict use of an eldercare robot. Int J Soc Robot 6:17–32. doi: 10.1007/s12369-013-0186-y CrossRefGoogle Scholar
  27. 27.
    Heerink M, Kröse B, Evers V, Wielinga B (2010) Assessing acceptance of assistive social agent technology by older adults: the Almere model. Int J Soc Robot 2:361–375. doi: 10.1007/s12369-010-0068-5 CrossRefGoogle Scholar
  28. 28.
    Broadbent E, Stafford R, MacDonald B (2009) Acceptance of healthcare robots for the older population: review and future directions. Int J Soc Robot 1:319–330. doi: 10.1007/s12369-009-0030-6 CrossRefGoogle Scholar
  29. 29.
    Baltes PB (1997) On the incomplete architecture of human ontogeny. Selection, optimization, and compensation as foundation of developmental theory. Am Psychol 52:366–380. doi: 10.1037/0003-066X.52.4.366 CrossRefGoogle Scholar
  30. 30.
    Staudinger UM, Marsiske M, Baltes PB (1995) Resilience and reserve capacity in later adulthood: potentials and limits of development across the life span. In: Cicchetti D, Cohen DJ (eds) Risk, disorder, and adaptation. Wiley, New York, pp 801-847. Accessed 09 Nov 2016
  31. 31.
    Chen K, Chan AHS (2011) A review of technology acceptance by older adults. Gerontechnology 10:1–12. doi: 10.4017/gt.2011. Google Scholar
  32. 32.
    Mallenius S, Rossi M, Tuunainen VK (2007) Factors affecting the adoption and use of mobile devices and services by elderly people—results from a pilot study. Paper presented at the 6th annual global mobility roundtable, Los Angeles. Accessed 09 Nov 2016
  33. 33.
    Schulz R (2012) Facilitators and barriers to technology uptake: individual end-user perspectives. In: Schulz R (ed) Quality of life technology handbook. CRC-Books, Boca Raton, pp 17–27Google Scholar
  34. 34.
    Czaja SJ, Sharit J, Charness N, Fisk AD, Rogers W (2001) The Center for Research and Education on Aging and Technology Enhancement (CREATE): a program to enhance technology for older adults. Gerontechnology 1:50–59. doi: 10.4017/gt.2001. CrossRefGoogle Scholar
  35. 35.
    Steel DM, Gray MA (2009) Baby boomers’ use and perception of recommended assistive technology: a systematic review. Disabil Rehabil Assist Technol 4:129–136. doi: 10.1080/17483100902767175 CrossRefGoogle Scholar
  36. 36.
    Harrefors C, Axelsson K, Sävenstedt S (2010) Using assistive technology services at differing levels of care: healthy older couples’ perceptions. J Adv Nurs 66:1523–1532. doi: 10.1111/j.1365-2648.2010.05335.x CrossRefGoogle Scholar
  37. 37.
    Wessels R, Dijcks B, Soede M, Gelderblom GJ, de Witte L (2003) Non-use of provided assistive technology devices. A literature overview. Technol Disabil 15:231-238. Accessed 09 Nov 2016
  38. 38.
    Ryu M-H, Kim S, Lee E (2009) Understanding the factors affecting online elderly user’s participation in video UCC services. Comput Hum Behav 25:619–632. doi: 10.1016/j.chb.2008.08.013 CrossRefGoogle Scholar
  39. 39.
    Tomita MR, Mann WC, Fraas LF, Stanton KM (2004) Predictors of the use of assistive devices that address physical impairments among community-based frail elders. J Appl Gerontol 23:141–155. doi: 10.1177/0733464804265606 CrossRefGoogle Scholar
  40. 40.
    Scherer M, Jutai J, Fuhrer M, Demers L, DeRuyter F (2007) A framework for modelling the selection of assistive technology devices (ATDs). Disabil Rehabil Assist Technol 2:1–8. doi: 10.1080/17483100600845414 CrossRefGoogle Scholar
  41. 41.
    McCreadie C, Tinker A (2005) The acceptability of assistive technology to older people. Ageing Soc 25:91–110. doi: 10.1017/S0144686X0400248X CrossRefGoogle Scholar
  42. 42.
    Melenhorst A-S, Rogers AW, Bouwhuis DG (2006) Older adults motivated choice for technological innovation. Evidence for benefit-driven selectivity. Psychol Aging 21:190–195. doi: 10.1037/0882-7974.21.1.190 CrossRefGoogle Scholar
  43. 43.
    Mathieson KM, Kronenfeld J, Keith VM (2002) Maintaining functional independence in elderly adults: the roles of health status and financial resources in predicting home modifications and use of mobility equipment. Gerontologist 42:24–31. doi: 10.1093/geront/42.1.24 CrossRefGoogle Scholar
  44. 44.
    Zimmer Z, Chappell NL (1994) Mobility restriction and the use of devices among seniors. J Aging Health 6:185–208. doi: 10.1177/089826439400600204 CrossRefGoogle Scholar
  45. 45.
    Cesta A, Coradeschi S, Cortellessa G, Gonzalez J, Tiberio L, von Rump S (2010) Enabling social interaction through embodiment in ExCITE. In: 2nd Italian Forum on Ambient Assisted Living, Trento, pp 1-7. Accessed 09 Nov 2016
  46. 46.
    Shibata T, Wada K, Saito T, Tanie K (2005) Human interactive robot for psychological enrichment and therapy. In: Proceedings of the AISB’05: social intelligence and interaction in animals, robots and agents symposium on robot companions: hard problems and open challenges in robot–human-interaction. Hatfield, pp 98–109. Accessed 09 Nov 2016
  47. 47.
    Kolling T, Baisch S, Schall A, Selic S, Rühl S, Kim Z, Rossberg H, Klein B, Pantel J, Oswald F, Knopf M (2016) What is emotional in emotional robotics? In: Tettegah SY, Garcia YE (eds) Emotion, technology and health. Communication of feelings for, with, and through digital media. Elsevier, Amsterdam, pp 83–104Google Scholar
  48. 48.
    Von Rump S (2013) Paula visits Pat [video]. Accessed 09 Nov 2016
  49. 49.
    Luck W (2013) Die Welt des Vergessens - Würdevoll leben trotz Demenz [The world of forgetting—living with dignity despite dementia] [documentary film]. Südwestdeutscher Rundfunk, StuttgartGoogle Scholar
  50. 50.
    Heerink M, Kröse B, Evers V, Wielinga B (2009) Measuring acceptance of an assistive social robot: a suggested toolkit. RO-MAN 2009—the 18th IEEE international symposium on robot and human interactive communication, Toyama, pp 528–533. doi: 10.1109/ROMAN.2009.5326320
  51. 51.
    Mollenkopf H, Oswald F, Wahl H-W (2007) Neue Person-Umwelt-Konstellationen im Alter: Befunde und Perspektiven zu Wohnen, außerhäuslicher Mobilität und Technik [New person–environment constellations in later life: findings and perspectives on housing, out-of-home mobility and technology]. In: Wahl H-W, Mollenkopf H (eds) Alternsforschung am Beginn des 21. Jahrhunderts. Alterns- und Lebenslaufkonzeptionen im deutschsprachigen Raum [Ageing research at the beginning of the 21st century]. Akademie-Verlag, Berlin, pp 361–380Google Scholar
  52. 52.
    Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, Leirer YO (1983) Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res 39:37–39. doi: 10.1016/0022-3956(82)90033-4 Google Scholar
  53. 53.
    Brunner E, Puri ML (2002) A class of rank-score tests in factorial designs. J Stat Plan Inference 103:331–360. doi: 10.1016/S0378-3758(01)00230-0 MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Wilcox RR (2013) Introduction to robust estimation and hypothesis testing, 3rd edn. Elsevier, AmsterdamzbMATHGoogle Scholar
  55. 55.
    SPSS Statistics (Version 22) [computer software]. IBMGoogle Scholar
  56. 56.
    Wu Y-H, Cristancho-Lacroix V, Fassert C, Facounau V, de Rotrou J, Rigaud A-S (2016) The attitudes and perceptions of older adults with mild cognitive impairment toward an assistive robot. J Appl Gerontol 35:3–17. doi: 10.1177/0733464813515092 CrossRefGoogle Scholar
  57. 57.
    Zaad L, Ben Allouch S (2008) The influence of control on the acceptance of ambient intelligence by elderly people: an explorative study. Lect Notes Comput Sc 5355:58–74. doi: 10.1007/978-3-540-89617-3_5 CrossRefGoogle Scholar
  58. 58.
    Shibata T, Kawaguchi Y, Wada K (2012) Investigation on people living with seal robot at home. Analysis of owners’ gender differences and pet ownership experience. Int J Soc Robot 4:53–63. doi: 10.1007/s12369-011-0111-1 CrossRefGoogle Scholar
  59. 59.
    Law M (2002) Participation in the occupations of everyday life. Am J Occup Ther 56:640–649. doi: 10.5014/ajot.56.6.640 CrossRefGoogle Scholar
  60. 60.
    Neven L (2010) ‘But obviously not for me’: robots, laboratories and the defiant identity of elder test users. Sociol Health Ill 32:335–347. doi: 10.1111/j.1467-9566.2009.01218.x CrossRefGoogle Scholar
  61. 61.
    Venkatesh V, Morris MG, Davis GB, Davis FD (2003) User acceptance of information technology: towards a unified view. MIS Q 27:425–478. Accessed 09 Nov 2016
  62. 62.
    Davis FD (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q 13:319–339. Accessed 09 Nov 2016
  63. 63.
    De Graaf MM, Ben Allouch S, van Dijk JA (2014) Long-term evaluation of a social robot in real homes. In: Proceedings of the AISB workshop in human–robot interaction, London. Accessed 09 Nov 2016

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Stefanie Baisch
    • 1
  • Thorsten Kolling
    • 1
  • Arthur Schall
    • 2
  • Saskia Rühl
    • 3
  • Stefanie Selic
    • 4
  • Ziyon Kim
    • 1
  • Holger Rossberg
    • 4
  • Barbara Klein
    • 4
  • Johannes Pantel
    • 2
  • Frank Oswald
    • 3
  • Monika Knopf
    • 1
  1. 1.Developmental Psychology LabGoethe UniversityFrankfurt am MainGermany
  2. 2.Institute of General MedicineGoethe UniversityFrankfurt am MainGermany
  3. 3.Interdisciplinary Ageing Research (IAW)Goethe UniversityFrankfurt am MainGermany
  4. 4.Faculty of Social Work and HealthFrankfurt University of Applied SciencesFrankfurt am MainGermany

Personalised recommendations