International Journal of Social Robotics

, Volume 7, Issue 5, pp 743–765 | Cite as

How do People Expect Humanoids to Respond to Touch?

  • Fransiska BasoekiEmail author
  • Fabio DallaLibera
  • Hiroshi Ishiguro


With close interaction between humans and robots expected to become more and more frequent in the near future, tactile interaction is receiving increasing interest. Many advances were made in the fields of tactile sensing and touch classification. Robot’s reactions to touches are usually decided by the robot’s designers and fit to a particular purpose. However, very little investigation has been directed to the movements that common people expect from robots being touched. This paper provides an initial step in this direction. Responses that people expect from a humanoid being touched were collected. These responses were then classified by automatically grouping similar responses. This allows the identification of distinct types of responses. Evaluation of how this grouping matches common sense were then performed. Results showed strong correlation between the automatic grouping and common sense, providing support to the idea that the automatically identified types of responses correspond to a plausible classification of robot’s responses to touch.


Humanoid robot Human-robot interaction (HRI) Touch Haptics 



The first author was supported by JSPS Research Fellowship for Young Scientists. The second author was supported by the JSPS Research Activity Start-up Grant-in-Aid for Scientific Research, Project Number 26880014.

Supplementary material

12369_2015_318_MOESM1_ESM.pdf (12.3 mb)
Supplementary material 1 (pdf 12571 KB)

Supplementary material 2 (mpg 17392 KB)

12369_2015_318_MOESM3_ESM.mpg (6.2 mb)
Supplementary material 3 (mpg 6302 KB)


  1. 1.
    Abdi H, Nahavandi S, Najdovski Z, Maciejewski AA (2013) Fault-tolerant force in human and robot cooperation. Int J Soc Robot 5(1):103–116CrossRefGoogle Scholar
  2. 2.
    Akgun B, Cakmak M, Yoo JW, Thomaz AL (2012) Trajectories and keyframes for kinesthetic teaching: a human-robot interaction perspective. In: 7th ACM/IEEE international conference on human-robot interaction (HRI’12). Massachusetts, Boston, pp 391–398Google Scholar
  3. 3.
    Albu-Schäffer A, Eiberger O, Fuchs M, Grebenstein M, Haddadin S, Ott C, Stemmer A, Wimböck T, Wolf S, Borst C, Hirzinger G (2011) Anthropomorphic soft robotics - from torque control to variable intrinsic compliance. In: Pradalier C, Siegwart R, Hirzinger G (eds) Robotics research, vol 70. Springer, Berlin/Heidelberg, pp 185–207CrossRefGoogle Scholar
  4. 4.
    Amirabdollahian F, Robins B, Dautenhahn K, Ji Z (2011) Investigating tactile event recognition in child-robot interaction for use in autism therapy. In: Engineering in medicine and biology society, EMBC, 2011 annual international conference of the IEEE, pp 5347–5351Google Scholar
  5. 5.
    Argall BD, Billard AG (2010) A survey of tactile human-robot interactions. Robot Auton Syst 58(10):1159–1176CrossRefGoogle Scholar
  6. 6.
    Banerjee A, Dave RN (2004) Validating clusters using the hopkins statistic. In: Fuzzy systems, 2004. Proceedings. 2004 IEEE international conference on, vol 1, pp 149–153Google Scholar
  7. 7.
    Bartneck C, Suzuki T, Kanda T, Nomura T (2007) The influence of peoples culture and prior experiences with aibo on their attitude towards robots. AI & SOCIETY 21(1–2):217–230. doi: 10.1007/s00146-006-0052-7 Google Scholar
  8. 8.
    Bauer C, Milighetti G, Yan W, Mikut R (2010) Human-like reflexes for robotic manipulation using leaky integrate-and-fire neurons. In: 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS 2010). Taipei, pp 2572–2577Google Scholar
  9. 9.
    Ben Amor H, Berger E, Vogt D, Jung B (2009) Kinesthetic bootstrapping: teaching motor skills to humanoid robots through physical interaction. In: Mertsching B (ed) KI 2009: advances in artificial intelligence, lecture notes in computer science. Springer, Berlin/Heidelberg, pp 492–499CrossRefGoogle Scholar
  10. 10.
    Breazeal C (2003) Emotion and sociable humanoid robots. Int J Hum Comput Stud 59(1–2):119–155 Applications of affective computing in human-computer interactionCrossRefGoogle Scholar
  11. 11.
    Cakmak M, Thomaz AL (2012) Designing robot learners that ask good questions. In: Proceedings of the seventh annual ACM/IEEE international conference on human-robot interaction, pp 17–24Google Scholar
  12. 12.
    Dahiya R, Metta G, Valle M, Sandini G (2010) Tactile sensing—from humans to humanoids. IEEE Trans Robot 26(1):1–20CrossRefGoogle Scholar
  13. 13.
    Dahl TS, Swere EA, Palmer A (2011) Touch-triggered withdrawal reflexes for safer robots. In: Dautenhahn K, Saunders J (eds) New frontiers in human-robot interaction. John Benjamins Publishing Company, Amsterdam, pp 281–304CrossRefGoogle Scholar
  14. 14.
    DallaLibera F, Minato T, Fasel I, Ishiguro H, Menegatti E, Pagello E (2007) Teaching by touching: an intuitive method for development of humanoid robot motions. In: IEEE-RAS 7th international conference on humanoid robots (Humanoids 2007). Pittsburg, PA, pp 352–359Google Scholar
  15. 15.
    DallaLibera F, Minato T, Fasel I, Ishiguro H, Pagello E, Menegatti E (2008) A new paradigm of humanoid robot motion programming based on touch interpretation. Robot Auton Syst 57(8):846–859CrossRefGoogle Scholar
  16. 16.
    Duchaine V, Lauzier N, Baril M, Lacasse MA, Gosselin C (2009) A flexible robot skin for safe physical human robot interaction. In: 2009 IEEE international conference on robotics and automation (ICRA 2009), Kobe, pp 3676–3681, doi: 10.1109/ROBOT.2009.5152595
  17. 17.
    Evers V, Maldonado H, Brodecki T, Hinds P (2008) Relational vs. group self-construal: Untangling the role of national culture in hri. In: human-robot interaction (HRI), 2008 3rd ACM/IEEE international conference on, pp 255–262Google Scholar
  18. 18.
    Field T (2003) Touch. MIT Press/Bradford Books, Cambridge/New YorkGoogle Scholar
  19. 19.
    Fishel J, Loeb G (2012) Sensing tactile microvibrations with the biotac—comparison with human sensitivity. In: 4th IEEE RAS/EMBS international conference on biomedical robotics and biomechatronics (BioRob), pp 1122–1127, doi: 10.1109/BioRob.2012.6290741
  20. 20.
    Fritzsche M, Elkmann N, Schulenburg E (2011) Tactile sensing: a key technology for safe physical human robot interaction. In: 6th ACM/IEEE international conference on human-robot interaction (HRI ’11). Lausanne, pp 139–140Google Scholar
  21. 21.
    Gibbons P, Dahl TS, Jones O (2012) Identification and production of simple tactile gestures. In: 7th ACM/IEEE international conference on human robot interaction (HRI2012), Boston, MAGoogle Scholar
  22. 22.
    Giuliani M, Lenz C, Müller T, Rickert M, Knoll A (2010) Design principles for safety in human-robot interaction. Int J Soc Robot 2(3):253–274CrossRefGoogle Scholar
  23. 23.
    Goetz J, Kiesler S, Powers A (2003) Matching robot appearance and behavior to tasks to improve human-robot cooperation. In: Proceedings of the 12th IEEE international workshop on robot and human interactive communication (ROMAN 2003). CA, San Francisco, pp 55–60Google Scholar
  24. 24.
    Grunwald G, Schreiber G, Albu-Schäffer A, Hirzinger G (2001) Touch: the direct type of human interaction with a redundant service robot. In: Proceedings of the 10th IEEE international workshop on robot and human interactive communication (ROMAN 2001). Bordeaux/Paris, pp 347–352Google Scholar
  25. 25.
    Hersch M, Guenter F, Calinon S, Billard A (2008) Dynamical system modulation for robot learning via kinesthetic demonstrations. IEEE Trans Robot 24(6):1463–1467CrossRefGoogle Scholar
  26. 26.
    Hertenstein MJ (2002) Touch: its communicative functions in infancy. Hum Dev 45:70–94CrossRefGoogle Scholar
  27. 27.
    Hertenstein MJ, Keltner D, App B, Bulleit BA, Jaskolka AR (2006) Touch communicates distinct emotions. Emotion 6(3):528–533CrossRefGoogle Scholar
  28. 28.
    Hosoda K, Tada Y, Asada M (2006) Anthropomorphic robotic soft fingertip with randomly distributed receptors. Robot Auton Syst 54(2):104–109CrossRefGoogle Scholar
  29. 29.
    Ji Z, Amirabdollahian F, Polani D, Dautenhahn K (2011) Histogram based classification of tactile patterns on periodically distributed skin sensors for a humanoid robot. In: RO-MAN, 2011 IEEE, pp 433–440Google Scholar
  30. 30.
    Kanda T, Miyashita T, Osada T, Haikawa Y, Ishiguro H (2008) Analysis of humanoid appearances in human-robot interaction. IEEE Trans Robot 24(3):725–735CrossRefGoogle Scholar
  31. 31.
    Kormushev P, Nenchev DN, Calinon S, Caldwell DG (2011) Upper-body kinesthetic teaching of a free-standing humanoid robot. In: 2011 IEEE international conference on robotics and automation (ICRA 2011). Shanghai, pp 3970–3975Google Scholar
  32. 32.
    Lecanuet JP, Schaal B (2002) Sensory performances in the human foetus: a brief summary of research. Intellectica 1(34):29–56Google Scholar
  33. 33.
    Maeda Y, Ushioda T, Makita S (2008) Easy robot programming for industrial manipulators by manual volume sweeping. In: 2008 IEEE international conference on robotics and automation (ICRA 2008). Pasadena, CA, pp 19–23Google Scholar
  34. 34.
    Minato T, DallaLibera F, Yokokawa S, Nakamura Y, Ishiguro H, Menegatti E (2009) A baby robot platform for cognitive developmental robotics. In: Workshop on “synergistic intelligence” at the 2009 IEEE/RSJ international conference on intelligent robots and systems (IROS 2009), St. Louis, MOGoogle Scholar
  35. 35.
    Miwa H, Okuchi T, Itoh K, Takanobu H, Takanishi A (2003) A new mental model for humanoid robots for human friendly communication introduction of learning system, mood vector and second order equations of emotion. In: 2003 IEEE international conference on robotics and automation (ICRA 2003), Taipei, vol 3, pp 3588–3593Google Scholar
  36. 36.
    Mörtl A, Lawitzky M, Kucukyilmaz A, Sezgin M, Basdogan C, Hirche S (2012) The role of roles: physical cooperation between humans and robots. Int J Robot Res 31(13):1657–1675CrossRefGoogle Scholar
  37. 37.
    Muir DW (2002) Adult communications with infants through touch: the forgotten sense. Hum Dev 45:95–99CrossRefGoogle Scholar
  38. 38.
    Naya F, Yamato J, Shinozawa K (1999) Recognizing human touching behaviors using a haptic interface for a pet-robot. In: IEEE international conference on systems man and cybernetics, Tokyo vol 2, pp 1030–1034Google Scholar
  39. 39.
    Noda T, Miyashita T, Ishiguro H, Hagita N (2007) Map acquisition and classification of haptic interaction using cross correlation between distributed tactile sensors on the whole body surface. In: 2007 IEEE/RSJ international conference on intelligent robots and systems (IROS 2007). San Diego, CA, pp 1099–1105Google Scholar
  40. 40.
    Pais A, Argall B, Billard A (2013) Assessing interaction dynamics in the context of robot programming by demonstration. Int J Soc Robot 5(4):477–490. doi: 10.1007/s12369-013-0204-0 CrossRefGoogle Scholar
  41. 41.
    Peternel L, Petrič T, Oztop E, Babič J (2014) Teaching robots to cooperate with humans in dynamic manipulation tasks based on multi-modal human-in-the-loop approach. Auton Robots 36(1–2):123–136. doi: 10.1007/s10514-013-9361-0 CrossRefGoogle Scholar
  42. 42.
    Pierris G, Dahl TS (2010) Compressed sparse code hierarchical som on learning and reproducing gestures in humanoid robots. In: RO-MAN, 2010 IEEE, pp 330–335Google Scholar
  43. 43.
    Powers A, Kramer A, Lim S, Kuo J, lai Lee S, Kiesler S (2005) Eliciting information from people with a gendered humanoid robot. In: Proceedings of the 14th IEEE international workshop on robot and human interactive communication (ROMAN 2005), Nashville, TN, pp 158–163, doi: 10.1109/ROMAN.2005.1513773
  44. 44.
    Raffle HS, Parkes AJ, Ishii H (2004) Topobo: a constructive assembly system with kinetic memory. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’04, pp 647–654Google Scholar
  45. 45.
    Rau PP, Li Y, Li D (2009) Effects of communication style and culture on ability to accept recommendations from robots. Comput Hum Behav 25(2):587–595. doi: 10.1016/j.chb.2008.12.025 CrossRefGoogle Scholar
  46. 46.
    Routasalo P (1999) Physical touch in nursing studies: a literature review. J Adv Nurs 30(4):843–850CrossRefGoogle Scholar
  47. 47.
    Russell JA (1997) Reading emotion from and into faces: resurrecting a dimensional-contextual perspective. In: Russell JA, Fernandez-Dols JM (eds) The psychology of facial expression. Cambridge University Press, New York, pp 295–320CrossRefGoogle Scholar
  48. 48.
    Schaal S, Ijspeert A, Billard A (2003) Computational approaches to motor learning by imitation. Philos Trans R Soc B 358(1431):537–547CrossRefGoogle Scholar
  49. 49.
    Schmitz A, Maiolino P, Maggiali M, Natale L, Cannata G, Metta G (2011) Methods and technologies for the implementation of large-scale robot tactile sensors. IEEE Trans Robot 27(3):389–400CrossRefGoogle Scholar
  50. 50.
    Silvera-Tawil D, Rye D, Velonaki M (2014) Interpretation of social touch on an artificial arm covered with an eit-based sensitive skin. Int J Soc Robot 6:489–505. doi: 10.1007/s12369-013-0223-x CrossRefGoogle Scholar
  51. 51.
    Suita K, Yamada Y, Tsuchida N, Imai K, Ikeda H, Sugimoto N (1995) A failure-to-safety “kyozon” system with simple contact detection and stop capabilities for safe human-autonomous robot coexistence. In: 1995 IEEE international conference on robotics and automation (ICRA 1995), Nagoya, vol 3, pp 3089–3096 vol 3, doi: 10.1109/ROBOT.1995.525724
  52. 52.
    Takei T, Shimono T, Kubo R, Nishi H, Ohnishi K (2008) Gravity compensation for improvement of operationarity in bilateral teleoperation. IEEJ Trans Ind Appl 128(6):767–774CrossRefGoogle Scholar
  53. 53.
    Tsuji T, Ito T (2009) Command recognition by haptic interface on human support robot. 2009 IEEE/RSJ international conference on intelligent robots and systems (IROS 2009). St. Louis, MO, pp 3178–3183Google Scholar
  54. 54.
    Vormbrock JK, Grossberg JM (1988) Cardiovascular effects of human-pet dog interactions. J Behav Med 11(5):509–517CrossRefGoogle Scholar
  55. 55.
    Voyles R, Khosla P (1995) Tactile gestures for human/robot interaction. 1995 IEEE/RSJ international conference on intelligent robots and systems (IROS 1995). Pittsburg, PA, pp 7–13Google Scholar
  56. 56.
    Wang H, Kosuge K (2012) Understanding and reproducing waltz dancers’ body dynamics in physical human-robot interaction. 2012 IEEE international conference on robotics and automation (ICRA 2012). St. Paul, MN, pp 3134–3140Google Scholar
  57. 57.
    Yamada Y, Hirasawa Y, Huang S, Umetani Y, Suita K (1997) Human-robot contact in the safeguarding space. IEEE/ASME Trans Mechatron 2(4):230–236. doi: 10.1109/3516.653047 CrossRefGoogle Scholar
  58. 58.
    Yamane K, Nakamura Y (2003) Dynamics filter-concept and implementation of online motion generator for human figures. Robot Autom IEEE Trans 19(3):421–432CrossRefGoogle Scholar
  59. 59.
    Yohanan S, MacLean KE (2011) Design and assessment of the haptic creature’s affect display. 6th ACM/IEEE international conference on human-robot interaction (HRI’11). Lausanne, pp 473–480Google Scholar
  60. 60.
    Yohanan S, MacLean KE (2012) The role of affective touch in human-robot interaction: human intent and expectations in touching the haptic creature. Int J Soc Robot 4(2):163–180CrossRefGoogle Scholar
  61. 61.
    Yoshikai T, Hayashi M, Ishizaka Y, Fukushima H, Kadowaki A, Sagisaka T, Kobayashi K, Kumagai I, Inaba M (2012) Development of robots with soft sensor flesh for achieving close interaction behavior. Adv Artif Intell 2012:8CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Fransiska Basoeki
    • 1
    Email author
  • Fabio DallaLibera
    • 1
  • Hiroshi Ishiguro
    • 1
  1. 1.Department of Systems Innovation, Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan

Personalised recommendations