Advertisement

International Journal of Social Robotics

, Volume 6, Issue 1, pp 121–139 | Cite as

A Modeling Framework for User-Driven Iterative Design of Autonomous Systems

  • Manja Lohse
  • Frederic Siepmann
  • Sven Wachsmuth
Article

Abstract

Many researchers in human-robot interaction have acknowledged the fact that iterative design is necessary to optimize the robots for the interaction with the users. However, few iterative user studies have been reported. We believe that one reason for this is that setting up systems for iterative studies is cumbersome because the system architectures do not support iterative design. In the paper, we address this problem by interlinking usability research with system development. In a first user study, we identify requirements and concepts for a new framework that eases the employment of autonomous robots in the iterative design process. With a second user study we show how robot behaviors are implemented in the new framework and how it enables the developer to efficiently make changes to these behaviors.

Keywords

Human-robot interaction System architecture Autonomous systems Tasks Iterative system design User studies 

References

  1. 1.
    Adams JA (2005) Human-robot interaction design: understanding user needs and requirements. In: Proceedings of the 2005 human factors and ergonomics society 49th annual meeting, Orlando, FL Google Scholar
  2. 2.
    Barnett J, Akolkar R, Auburn R, Bodell M, Burnett D, Carter J, McGlashan S, Lager T, Helbing M, Hosn R et al (2007) State chart xml (scxml): state machine notation for control. In: W3C working draft Google Scholar
  3. 3.
    Bartneck C, Kulić D, Croft E, Zoghbi S (2009) Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int J Soc Robot 1(1):71–81 CrossRefGoogle Scholar
  4. 4.
    Brugali D, Shakhimardanov A (2010) Component-based robotic engineering. IEEE Robot Autom Mag 17(1):100–112 CrossRefGoogle Scholar
  5. 5.
    Bryson J (2010) The behavior-oriented design of modular agent intelligence. Agent technologies, infrastructures, tools, and applications for e-services. Lect Notes Comput Sci 2592:61–76 CrossRefGoogle Scholar
  6. 6.
    Burghart C, Holzapfel H, Haeussling R, Breuer S (2007) Coding interaction patterns between human and receptionist robot. In: Proceedings of humanoids 2007, Pittsburgh, PA, USA Google Scholar
  7. 7.
    Clark RE (1983) Reconsidering research in learning from media. Rev Educ Res 53(4):445–459 CrossRefGoogle Scholar
  8. 8.
    Clarkson E, Arkin RC (2006) Applying heuristic evaluation to human-robot interaction systems. In: Proceedings of HRI 2006 Google Scholar
  9. 9.
    Fenton N, Pfleeger S (1991) Software metrics. Chapman & Hall, London MATHGoogle Scholar
  10. 10.
    Fitzpatrick P, Metta G, Natale L (2008) Towards long-lived robot genes. Robot Auton Syst 56(1):29–45 CrossRefGoogle Scholar
  11. 11.
    Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns. Addison-Wesley, Reading Google Scholar
  12. 12.
    Glas D, Satake S, Kanda T, Hagita N (2011) An interaction design framework for social robots. In: Proceedings of robotics: science and systems, Los Angeles, CA, USA Google Scholar
  13. 13.
    Hanheide M, Lohse M, Dierker A (2010) Salem—statistical analysis of elan files in matlab. In: Proceedings of workshop on multimodal corpora: advances in capturing, coding and analyzing multimodality, 7th international conference for language resources and evaluation (LREC 2010) Google Scholar
  14. 14.
    Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Comput Program 8(3):231–274 CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Heerink M, Kröse B, Evers V, Wielinga B (2010) Assessing acceptance of assistive social agent technology by older adults: the almere model. Int J Soc Robot 2(4):361–375 CrossRefGoogle Scholar
  16. 16.
    Joosse M, Sardar A, Lohse M, Evers V (2013) Behave-ii: the revised set of measures to assess users’ attitudinal and behavioral responses to a social robot. Int J Soc Robot 5(3):379–388 CrossRefGoogle Scholar
  17. 17.
    Jüngling K, Arens M, Hanheide M, Sagerer G (2008) Fusion of perceptual processes for real-time object tracking. In: Proceedings international conference on information fusion, Cologne, Germany Google Scholar
  18. 18.
    Kamide H, Takubo T, Ohara K, Mae Y, Arai T (2013) Impressions of humanoids: the development of a measure for evaluating a humanoid. Int J Soc Robot. doi: 10.1007/s12369-013-0187-x Google Scholar
  19. 19.
    Kanda T, Shimada M, Koizumi S (2012) Children learning with a social robot. In: Proceedings of HRI, pp 351–358 Google Scholar
  20. 20.
    Lang S, Kleinehagenbrock M, Hohenner S, Fritsch J, Fink GA, Sagerer G (2003) Providing the basis for human-robot-interaction: a multi-modal attention system for a mobile robot. In: Proc int conf on multimodal interfaces, Vancouver, Canada, pp 28–35 Google Scholar
  21. 21.
    Lanza M (2001) The evolution matrix: recovering software evolution using software visualization techniques. In: Proceedings of the 4th international workshop on principles of software evolution, pp 37–42 Google Scholar
  22. 22.
    Lee MK, Forlizzi J, Kiesler SB, Rybski PE, Antanitis J, Savetsila S (2012) Personalization in hri: a longitudinal field experiment. In: Proceedings of HRI, pp 319–326 Google Scholar
  23. 23.
    Leite I, Martinho C, Paiva A (2013) Social robots for long-term interaction: a survey. Int J Soc Robot 5(2):291–308 CrossRefGoogle Scholar
  24. 24.
    Lohse M (2010) Investigating the influence of situations and expectations on user behavior—empirical analyses in human-robot interaction. PhD thesis, Faculty of Technology, Bielefeld University Google Scholar
  25. 25.
    Lohse M (2011) The role of expectations and situations in human-robot interaction. In: New frontiers in human-robot interaction. Benjamins, Amsterdam, pp 35–56 Google Scholar
  26. 26.
    Lohse M, Hanheide M, Rohlfing K, Sagerer G (2009) Systemic interaction analysis (sina) in hri. In: Proceedings of conference on human-robot interaction (HRI) Google Scholar
  27. 27.
    Moratz R, Tenbrink T (2006) Spatial reference in linguistic human-robot interaction: iterative, empirically supported development of a model of projective relations. Spat Cogn Comput 6(1):63–107 Google Scholar
  28. 28.
    Nalin M, Baroni I, Kruijff-Korbayová I, Cañamero L, Lewis M, Beck A, Cuayáhuitl H, Sanna A (2012) Children’s adaptation in multi-session interaction with a humanoid robot. In: Proceedings of RO-MAN, pp 351–357 Google Scholar
  29. 29.
    Nylander S, Ljungblad S, Villarreal JJ (2012) A complementing approach for identifying ethical issues in care robotics—grounding ethics in practical use. In: Proceedings of RO-MAN, pp 797–802 Google Scholar
  30. 30.
    Payr S (2010) Closing and closure in human-companion interactions: analyzing video data from a field study. In: Proceedings of RO-MAN, pp 476–481 Google Scholar
  31. 31.
    Peltason J, Wrede B (2010) Pamini: a framework for assembling mixed-initiative human-robot interaction from generic interaction patterns. In: SIGDIAL 2010 Conference, Tokyo, Japan Google Scholar
  32. 32.
    Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger E, Wheeler R, Ng A (2009) Ros: an open-source robot operating system. In: Open-source software workshop of the international conference on robotics and automation (ICRA) Google Scholar
  33. 33.
    Sarvadevabhatla RK, Ng-Thow-Hing V, Okita SY (2010) Extended duration human-robot interaction: tools and analysis. In: Proceedings of RO-MAN, pp 7–14 Google Scholar
  34. 34.
    Schneider S (2009) Integration einer humanoiden Robotikplattform in einer serviceorientierten Architektur. Master’s thesis, Faculty of Technology, Bielefeld University Google Scholar
  35. 35.
    Severinson-Eklundh K, Green A, Hüttenrauch H, Oestreicher L, Norman M (2004) Involving users in the design of a mobile office roboter. IEEE Trans Syst Man Cybern, Part C, Appl Rev 34(2):113–124 CrossRefGoogle Scholar
  36. 36.
    Spexard TP, Hanheide M (2009) System integration supporting evolutionary development and design. In: Human centered robotic systems. Springer, Berlin Google Scholar
  37. 37.
    Walters ML, Oskoei MA, Syrdal DS, Dautenhahn K (2011) A long-term human-robot proxemic study. In: Proceedings of RO-MAN, pp 137–142 Google Scholar
  38. 38.
    Weiss A, Bernhaupt R, Lankes M, Tscheligi M (2009) The usus evaluation framework for human-robot interaction. In: AISB2009: Proceedings of the symposium on new frontiers in human-robot interaction, Edinburgh, Scottland, April 8–9, 2009, pp 158–165 Google Scholar
  39. 39.
    Weiss A, Bernhaupt R, Tscheligi M (2011) The USUS evaluation framework for user-centered HRI. In: New frontiers in human-robot interaction. Benjamins, Amsterdam, pp 89–110 Google Scholar
  40. 40.
    Wrede S (2008) An information-driven architecture for cognitive systems research. PhD thesis, Faculty of Technology, Bielefeld University Google Scholar
  41. 41.
    Wrede S, Hanheide M, Wachsmuth S, Sagerer G (2006) Integration and coordination in a cognitive vision system. In: Proceedings of international conference on computer vision systems, New York City, NY, USA Google Scholar
  42. 42.
    van der Zant T, Iocchi L (2011) Robocup@home: adaptive benchmarking of robot bodies and minds. In: Proceedings international conference on social robotics 2011. LNAI, vol 7072. Springer, Berlin, pp 214–225 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Manja Lohse
    • 1
  • Frederic Siepmann
    • 2
  • Sven Wachsmuth
    • 2
  1. 1.University of TwenteEnschedeNetherlands
  2. 2.Bielefeld UniversityBielefeldGermany

Personalised recommendations