International Journal of Social Robotics

, Volume 5, Issue 3, pp 357–365 | Cite as

Design of a Parametric Model of Personal Space for Robotic Social Navigation

  • Elena TortaEmail author
  • Raymond H. Cuijpers
  • James F. Juola


The design of socially acceptable behaviours is becoming one major issue for the development of robots that are able to interact with humans in unconstrained environments. In particular, social behaviours such as gazing, mutual positioning or gesturing allow robots to initiate and maintain an information exchange with humans. This paper focuses on (1) the study of mutual positioning between a small humanoid robot and a person through two psychometric experiments and (2) the design of a parametric model of the personal space based on the results of the two experiments. Results suggest that human–human interpersonal distances are shorter than human–robot interpersonal distances during a communication exchange, at least for the small humanoid robot used in our experiments. We also found that participants evaluate different directions of approach in a significantly different way.


Human–robot interaction Proxemics Social navigation Psychometric study Particle filter Personal space 



The research leading to these results is part of the KSERA project ( and has received funding from the European Commission under the 7th Framework Programme (FP7) for Research and Technological Development under grant agreement No. 2010-248085. The authors gratefully acknowledge the work done by James Loma, Joey and Richie Baten, Frank Basten, Jiri Fajta and Jan Roelof de Pijper.


  1. 1.
    Amaoka T, Laga H, Yoshie M, Nakajima M (2011) Personal space-based simulation of non-verbal communications. Entertain Comput 2(4):245–261. Special section: international conference on entertainment computing and special section: entertainment interfaces CrossRefGoogle Scholar
  2. 2.
    Arulampalam MS, Makel S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking. IEEE Trans Signal Process, 50 Google Scholar
  3. 3.
    Estela B (1999) Dynamic approach to behavior-based robotics. PhD thesis, University of Minho Google Scholar
  4. 4.
    Chidambaram V, Chiang YH, Mutlu B (2012) Designing persuasive robots: how robots might persuade people using vocal and nonverbal cues. In: HRI, 2012, Boston, USA Google Scholar
  5. 5.
    Dautenhahn K, Walters M, Woods S, Koay KL, Nehaniv CL, Sisbot A, Alami R, Siméon T (2006) How may I serve you? In: Proceedings of HRI 2006, pp 172–179 Google Scholar
  6. 6.
    Hall ET (1966) The hidden dimension. Doubleday, New York Google Scholar
  7. 7.
    Ham J, Bokhorst R, Cuijpers R, van der Pol D, Cabibihan J-J (2011) Making robots persuasive: the influence of combining persuasive strategies (gazing and gestures) by a storytelling robot on its persuasive power. In: Mutlu B, Bartneck C, Ham J, Evers V, Kanda T (eds) Social robotics. Lecture notes in computer science, vol 7072. Springer, Berlin/Heidelberg, pp 71–83 CrossRefGoogle Scholar
  8. 8.
    Johnson DO, Agah A (2009) Human robot interaction through semantic integration of multiple modalities, dialog management, and contexts. Int J Soc Robot 1(4):283–305 CrossRefGoogle Scholar
  9. 9.
    Dautenhahn K (2007) Socially intelligent robots: dimensions of human–robot interaction. In: The royal society, pp 679–704 Google Scholar
  10. 10.
    Kirby R (2010) Social robot navigation. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, May 2010 Google Scholar
  11. 11.
    Kristoffersson A, Eklundh KS, Loutfi A (2013) Measuring the quality of interaction in mobile robotic telepresence: a pilot’s perspective. Int J Soc Robot 5(1):89–101 CrossRefGoogle Scholar
  12. 12.
    Lambert D (2004) Body language. Harper Collins, London Google Scholar
  13. 13.
    Mumm J, Mutlu B (2011) Human–robot proxemics: physical and psychological distancing in human–robot interaction. In: Proceedings of HRI 2011 Google Scholar
  14. 14.
    Mutlu B, Kanda T, Forlizzi J, Hodgins J, Ishiguro H (2012) Conversational gaze mechanisms for humanlike robots. ACM Trans Interact Intell Syst 1(2):12:1–12:33 CrossRefGoogle Scholar
  15. 15.
    Pacchierotti E, Christensen HI, Jensfelt P (2007) Evaluation of passing distance for social robots. In: Robot and human interactive communication, 2006. ROMAN 2006. The 15th IEEE international symposium on robot and human interactive communication. IEEE Press, New York, pp 315–320 Google Scholar
  16. 16.
    Salem M, Eyssel F, Rohlfing K, Kopp S, Joublin F (2011) Effects of gesture on the perception of psychological anthropomorphism: a case study with a humanoid robot. In: Mutlu B, Bartneck C, Ham J, Evers V, Kanda T (eds) Social robotics. Lecture notes in computer science, vol 7072. Springer, Berlin/Heidelberg, pp 31–41 CrossRefGoogle Scholar
  17. 17.
    Sisbot EA, Marin-Urias LF, Broquère X, Sidobre D, Alami R (2010) Synthesizing robot motions adapted to human presence. Int J Soc Robot Google Scholar
  18. 18.
    Clair AS, Mead R, Mataric MJ (2011) Investigating the effects of visual saliency on deictic gesture production by a humanoid robot. In: RO-MAN, 2011 IEEE, July 31 2011–August 3 2011, pp 210–216 CrossRefGoogle Scholar
  19. 19.
    Syrdal DS, Koay KL, Walters ML, Dautenhahn K (2007) A personalized robot companion? The role of individual differences on spatial preferences in HRI scenarios. In: Proceedings of RO-MAN 2007, pp 1143–1148 Google Scholar
  20. 20.
    Takayama L, Pantofaru C (2009) Influences on proxemic behaviors in human-robot interaction. In: IEEE/RSJ international conference on intelligent robots and systems, IROS 2009, October, pp 5495–5502 Google Scholar
  21. 21.
    Tapus A, Mataric MJ (2008) Socially assistive robots: the link between personality, empathy, physiological signals, and task performance. In: Proceedings of AAAI spring symposium on emotion personality and social behavior Google Scholar
  22. 22.
    Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, Cambridge zbMATHGoogle Scholar
  23. 23.
    Torta E, Cuijpers RH, Juola JF (2011) A model of the user’s proximity for Bayesian inference. In: Proceedings of HRI 2011 Google Scholar
  24. 24.
    Torta E, Cuijpers RH, Juola JF (2012) Dynamic neural field as framework for behaviour coordination in mobile robots. In: World Automation Congress (WAC), 2012. IEEE Press, New York, pp 1–6 Google Scholar
  25. 25.
    Torta E, Cuijpers R, Juola J, van der Pol D (2011) Design of robust robotic proxemic behaviour. In: Mutlu B, Bartneck C, Ham J, Evers V, Kanda T (eds) Social robotics. Lecture notes in computer science, vol 7072. Springer, Berlin/Heidelberg, pp 21–30 CrossRefGoogle Scholar
  26. 26.
    Torta E, Cuijpers R, Juola J, van der Pol D (2012) Modeling and testing proxemic behavior for humanoid robots. Int J Humanoid Robot 09(04):1250028 CrossRefGoogle Scholar
  27. 27.
    Walters ML, Dautenhahn K, Boekhorst R, Koay KL, Syrdal DS, Nehaniv C (2009) An empirical framework for human-robot proxemics. In: AISB 2009 Google Scholar
  28. 28.
    Yamaoka F, Kanda T, Ishiguro H, Hagita N (2010) A model of proximity control for information-presenting robots. IEEE Trans Robot 26(1):187–195 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Elena Torta
    • 1
    Email author
  • Raymond H. Cuijpers
    • 1
  • James F. Juola
    • 1
  1. 1.Faculty of Industrial Engineering and Innovation Sciences, Human-Technology Interaction GroupEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations