International Journal of Social Robotics

, Volume 5, Issue 1, pp 103–116

Fault-Tolerant Force in Human and Robot Cooperation

  • Hamid Abdi
  • Saeid Nahavandi
  • Zoran Najdovski
  • Anthony A. Maciejewski
Article

Abstract

Fault-tolerant solutions greatly benefit the dependability of robotic systems. This advantage is critical for robotic systems that perform in collaboration with humans. This work addresses the fault tolerance of robotic manipulators for cooperatively manipulating an object together with a human. Cooperation occurs for slow lifting or pushing of the object. Reconfiguration of the manipulator is performed to maintain the cooperative force level despite the occurrence of robot joint failures. We present several strategies that are investigated for optimally maintaining the required force level for human-robot task cooperation. For each strategy, a reconfiguration control law is introduced that optimises the fault tolerance of the maintained force level. Three case studies are introduced to validate the proposed reconfiguration laws,demonstrating that this approach results in an optimal fault-tolerant force in human-robot cooperation.

Keywords

Human-robot cooperation Fault-tolerant robot Safety Reliability 

References

  1. 1.
    Lallee S, Yoshida E, Mallet A, Nori F, Natale L, Metta G, Warneken F, Dominey P (2010) Human-robot cooperation based on interaction learning. In: Sigaud O, Peters J (eds) From motor learning to interaction learning in robots. Studies in computational intelligence, vol 264. Springer, Berlin, pp 491–536 CrossRefGoogle Scholar
  2. 2.
    López M, Barea R, Bergasa L, Escudero M (2004) A human–robot cooperative learning system for easy installation of assistant robots in new working environments. J Intell Robot Syst 40:233–265 CrossRefGoogle Scholar
  3. 3.
    Wojtara T, Uchinara M, Murayama H, Shimoda S, Sakai S, Fujimoto H, Kimura H (2009) Human-robot cooperation in precise positioning of a flat object. Automatica 45:333–342 CrossRefMATHGoogle Scholar
  4. 4.
    Heikkilä S, Halme A, Schiele A (2010) Human-human inspired task and object definition for astronaut-robot cooperation. In: Proc. of the 10th international symposium on artificial intelligence, robotics and automation in space (i-SAIRAS) Google Scholar
  5. 5.
    Bluethmann W, Ambrose R, Diftler M, Askew S, Huber E, Goza M, Rehnmark F, Lovchik C, Magruder D (2003) Robonaut: a robot designed to work with humans in space. Auton Robots 14:179–197 CrossRefMATHGoogle Scholar
  6. 6.
    Kumar R, Berkelman P, Gupta P, Barnes A, Jensen P, Whitcomb L, Taylor R (2000) Preliminary experiments in cooperative human/robot force control for robot assisted microsurgical manipulation. In: Proceeding of the IEEE international conference on robotics and automation, San Francisco, CA, USA, pp 610–617 Google Scholar
  7. 7.
    Kargov A, Asfour T, Pylatiuk C, Oberle R, Klosek H, Schulz S, Regenstein K, Bretthauer G, Dillmann R (2005) Development of an anthropomorphic hand for a mobile assistive robot. In: Proceeding of the IEEE international conference on rehabilitation robotics, Chicago, IL, USA, pp 182–186 Google Scholar
  8. 8.
    Koeppe R, Engelhardt D, Hagenauer A, Heiligensetzer P, Kneifel B, Knipfer A, Stoddard K (2005) Robot-robot and human-robot cooperation in commercial robotics applications. Robot. Res., 202—216 Google Scholar
  9. 9.
    Yong Y, Lan W, Jie T, Lixun Z (2006) Arm rehabilitation robot impedance control and experimentation. In: Proceeding of the IEEE international conference on robotics and biomimetics, pp 914–918 CrossRefGoogle Scholar
  10. 10.
    Fong T, Nourbakhsh I, Dautenhahn K (2003) A survey of socially interactive robots. Robot Auton Syst 42:143–166 CrossRefMATHGoogle Scholar
  11. 11.
    Abdi H, Nahavandi S (2012) Well-conditioned configurations of fault-tolerant manipulators. Robot Auton Syst 60:242–251 CrossRefGoogle Scholar
  12. 12.
    Haddadin S, Albu-Schäffer A, Hirzinger G (2011) Safe physical human-robot interaction: measurements, analysis and new insights. Springer tracts in advanced robotics, vol 66, pp 395–407 Google Scholar
  13. 13.
    Abdi H, Nahavandi S, Masouleh MT (2010) Minimal force jump within human and assistive robot cooperation. In: Proceeding of the IEEE/RSJ international conference on intelligent robots and systems, Taiwan, pp 2651–2656 Google Scholar
  14. 14.
    Alami R, Albu-Schaeffer A, Bicchi A, Bischoff R, Chatila R, De Luca A, De Santis A, Giralt G, Guiochet J, Hirzinger G (2006) Safe and dependable physical human-robot interaction in anthropic domains: state of the art and challenges. In: Proceeding of the IEEE/RSJ international conference on intelligent robots and systems, ‘Workshop on pHRI—physical human-robot interaction in anthropic domains’, pp 1–15 Google Scholar
  15. 15.
    Goetz J, Kiesler S, Powers A (2003) Matching robot appearance and behavior to tasks to improve human-robot cooperation. In: Proceeding of the 12th IEEE international workshop on robot and human interactive communication, pp 55–60 Google Scholar
  16. 16.
    Yamada Y, Yamamoto T, Morizono T, Umetani Y (1999) FTA-based issues on securing human safety in a human/robot coexistence system. In: Proceeding of the IEEE international conference on systems, man, and cybernetics, pp 1058–1063 Google Scholar
  17. 17.
    Kosuge K, Kakuya H, Hirata Y (2001) Control algorithm of dual arms mobile robot for cooperative works with human. In: Proceeding of the IEEE international conference on systems, man, and cybernetics, pp 3223–3228 Google Scholar
  18. 18.
    Tsumugiwa T, Yokogawa R, Hara K (2002) Variable impedance control based on estimation of human arm stiffness for human-robot cooperative calligraphic task. In: Proceeding of the IEEE international conference on robotics and automation, San Diego, CA, USA, pp 644–650 Google Scholar
  19. 19.
    Takubo T, Arai H, Hayashibara Y, Tanie K (2002) Human-robot cooperative manipulation using a virtual nonholonomic constraint. Int J Robot Res 21:541 CrossRefGoogle Scholar
  20. 20.
    Harwin WS (2009) Impedance mismatch: some differences between the way humans and robots control interaction forces. In: Proceeding of the IEEE international conference on rehabilitation robotics, p 19 CrossRefGoogle Scholar
  21. 21.
    Hyowon J, Seul J (2009) Hardware design on an FPGA chip of impedance force control for interaction between a human operator and a robot arm. In: Proceeding of the 7th Asian control conference (ACC), pp 1480–1485 Google Scholar
  22. 22.
    Kye-Young L, Seung-Yeol L, Jong-Ho C, Sang-Heon L, Chang-Soo H (2006) The application of the human-robot cooperative system for construction robot manipulating and installing heavy materials. In: Proceeding of the international joint conference SICE-ICASE, pp 4798–4802 Google Scholar
  23. 23.
    Lamy X, Colledani F, Gutman PO (2010) Identification and experimentation of an industrial robot operating in varying-impedance environments. In: Proceeding of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 3138–3143 Google Scholar
  24. 24.
    Minyong P, Mouri K, Kitagawa H, Miyoshi T, Terashima K (2007) Hybrid impedance and force control for massage system by using humanoid multi-fingered robot hand. In: Proceeding of the IEEE international conference on systems, man and cybernetics, pp 3021–3026 Google Scholar
  25. 25.
    Abdi H, Nahavandi S (2010) Fault tolerance force for redundant manipulators. In: Proceeding of the IEEE international conference on advanced computer control, pp 612–617 CrossRefGoogle Scholar
  26. 26.
    Abdi H, Nahavandi S (2010) Joint velocity redistribution for fault tolerant manipulators. In: Proceeding of the IEEE conference on robotics automation and mechatronics, pp 492–497 CrossRefGoogle Scholar
  27. 27.
    Abdi H, Nahavandi S, Frayman Y, Maciejewski AA (2011) Optimal mapping of joint faults into healthy joint velocity space for fault tolerant redundant manipulators. Robotica. doi:10.1017/S0263574711000671, pp. 1–14 Google Scholar
  28. 28.
    Corke PI (1996) A robotics toolbox for MATLAB. IEEE Robot Autom Mag 3:24–32 CrossRefGoogle Scholar
  29. 29.
    Abdi H, Nahavandi S (2010) Optimal actuator fault tolerance for static nonlinear systems based on minimum output velocity jump. In: Proceeding of the IEEE international conference on information and automation, pp 1165–1170 CrossRefGoogle Scholar
  30. 30.
    Abdi H, Nahavandi S, Najdovski Z (2010) On the effort of task completion for partially-failed manipulators. In: Proceeding of the IEEE international conference on industrial informatics, pp 201–206 Google Scholar
  31. 31.
    Abdi H, Nahavandi S, Najdovski Z (2010) Fault tolerance operation of cooperative manipulators. In: Proceeding of the IEEE international symposium on artificial intelligence, robotics and automation in space, Japan, pp 144–151 Google Scholar

Copyright information

© Springer Science & Business Media BV 2012

Authors and Affiliations

  • Hamid Abdi
    • 1
    • 2
  • Saeid Nahavandi
    • 1
  • Zoran Najdovski
    • 1
  • Anthony A. Maciejewski
    • 2
  1. 1.Center for Intelligent Systems ResearchDeakin UniversityGeelong Waurn Ponds CampusAustralia
  2. 2.Electrical and Computer Engineering DepartmentColorado State UniversityFort CollinsUSA

Personalised recommendations