International Journal of Social Robotics

, Volume 4, Issue 1, pp 5–14 | Cite as

Perception and Action as Two Sides of the Same Coin. A Review of the Importance of Action-Perception Links in Humans for Social Robot Design and Research

  • Agnieszka WykowskaEmail author
  • Anna Schubö


This paper focuses on the topic of human cognitive architecture in the context of links between action and perception. Results from behavioural studies, neuro-imaging, human electrophysiology as well as single-cell studies in monkeys are discussed. These data as well as theoretical background are brought forward to argue that a close connection between action and perception should be considered in designs of artificial systems. Examples of such systems are described and the application of those approaches to robotics is stressed.


Human action planning Action-perception links Perceptual selection Social robotics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clark A (1999) An embodied cognitive science? Trends Cogn Sci 3:345–351 CrossRefGoogle Scholar
  2. 2.
    Stein L (1994) Imagination and situated cognition. J Exp Theor Artif Intell 6:393–407 CrossRefGoogle Scholar
  3. 3.
    Matarić M (1992) Integration of representation into goal-driven behavior based robots. IEEE J Robot Autom 8:304–312 CrossRefGoogle Scholar
  4. 4.
    Greenwald A (1970) Sensory feedback mechanisms in performance control: with special reference to the ideomotor mechanism. Psychol Rev 77:73–99 CrossRefGoogle Scholar
  5. 5.
    Hommel B, Müsseler J, Aschersleben G, Prinz W (2001) The Theory of Event Coding (TEC): a framework for perception and action planning. Behav Brain Sci 24:849–937 CrossRefGoogle Scholar
  6. 6.
    Prinz W (1997) Perception and action planning. Eur J Cogn Psychol 9:129–154 CrossRefGoogle Scholar
  7. 7.
    Harless E (1861) Der Apparat des Willens [The apparatus of will]. Z Philos Philos Krit 38:50–73 Google Scholar
  8. 8.
    Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3:1212–1217 CrossRefGoogle Scholar
  9. 9.
    Greenwald AG (1970) A choice reaction time test of ideomotor theory. J Exp Psychol 86:20–26 CrossRefGoogle Scholar
  10. 10.
    Elsner B, Hommel B (2001) Effect anticipation and action control. J Exp Psychol Hum Percept Perform 27:229–240 CrossRefGoogle Scholar
  11. 11.
    Hommel B (2010) Grounding attention in action control: the intentional control of selection. In: Bruya BJ (ed) Effortless attention: a new perspective in the cognitive science of attention and action. MIT Press, Cambridge, pp 121–140 Google Scholar
  12. 12.
    Hommel B (1998) Event files: evidence for automatic integration of stimulus-response episodes. Vis Cogn 5:183–216 CrossRefGoogle Scholar
  13. 13.
    Müsseler J, Hommel B (1997) Blindness to response-compatible stimuli. J Exp Psychol Hum Percept Perform 23:861–872 CrossRefGoogle Scholar
  14. 14.
    Zwickel J, Grosjean J, Prinz W (2008) A contrast effect between the concurrent production and perception of movement directions. Vis Cogn 26:953–978 CrossRefGoogle Scholar
  15. 15.
    Schubotz RI, von Cramon DY (2002) Predicting perceptual events activates corresponding motor schemes in lateral premotor cortex: an fMRI study. NeuroImage 15:787–796 CrossRefGoogle Scholar
  16. 16.
    Allport A (1987) Selection for action: some behavioral and neurophysiological considerations of attention and action. In: Heuer H, Sanders AF (eds) Perspectives on perception and action. Erlbaum, Hillsdale, pp 395–419 Google Scholar
  17. 17.
    Rizzolatti G, Riggio L, Sheliga BM (1994) Space and selective attention. In: Umiltà C, Moscovitch M (eds) Attention and performance, XV. Conscious and nonconscious information processing. MIT Press, Cambridge, pp 231–265 Google Scholar
  18. 18.
    Deubel H, Schneider WX (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis Res 36:1827–1837 CrossRefGoogle Scholar
  19. 19.
    Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222 CrossRefGoogle Scholar
  20. 20.
    Wolfe JM (1994) Guided Search 2.0: a revised model of visual search. Psychon Bull Rev 1:202–238 CrossRefGoogle Scholar
  21. 21.
    Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229:782–784 CrossRefGoogle Scholar
  22. 22.
    Reynolds JH, Chelazzi L, Desimone R (1999) Competitive mechanism subserve attention in macaque areas V2 and V4. J Neurosci 19:1736–1753 Google Scholar
  23. 23.
    Craighero L, Fadiga L, Rizzolatti G, Umiltà CA (1999) Action for perception: a motor-visual attentional effect. J Exp Psychol Hum Percept Perform 25:1673–1692 CrossRefGoogle Scholar
  24. 24.
    Fagioli S, Hommel B, Schubotz RI (2007) Intentional control of attention: action planning primes action related stimulus dimensions. Psychol Res 71:22–29 CrossRefGoogle Scholar
  25. 25.
    Wykowska A, Schubö A, Hommel B (2009) How you move is what you see: action planning biases selection in visual search. J Exp Psychol Hum Percept Perform 3:1755–1769 CrossRefGoogle Scholar
  26. 26.
    Wykowska A, Hommel B, Schubö A (2011) Action-induced effects on perception depend neither on element-level nor on set-level similarity between stimulus and response sets. Atten Percept Psychophys 73:1034–1041 CrossRefGoogle Scholar
  27. 27.
    Gibson EJ (1977) The theory of affordances. In: Shaw RE, Bransford J (eds) Perceiving, acting and knowing. Erlbaum, Hillsdale, pp 127–143 Google Scholar
  28. 28.
    Humphreys GW, Riddoch MJ (2001) Detection by action: neuropsychological evidence for action-defined templates in search. Nat Neurosci 4:84–89 CrossRefGoogle Scholar
  29. 29.
    Tucker R, Ellis M (2001) The potentiation of grasp types during visual object categorization. Vis Cogn 8:769–800 CrossRefGoogle Scholar
  30. 30.
    Grèzes J, Decety J (2002) Does visual perception of object afford action? Evidence from a neuroimaging study. Neuropsychologia 40:212–222 CrossRefGoogle Scholar
  31. 31.
    Grafton ST, Fadiga L, Arbib MA, Rizzolatti G (1997) Premotor cortex activation during observation and naming of familiar tools. NeuroImage 6:231–236 CrossRefGoogle Scholar
  32. 32.
    Murata A, Fadiga L, Fogassi L, Gallese V, Raos V, Rizzolatti G (1997) Object representation in the ventral premotor cortex (area F5) of the monkey. J Neurophysiol 78:2226–2230 Google Scholar
  33. 33.
    Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609 CrossRefGoogle Scholar
  34. 34.
    Kohler E, Keysers C, Umilta MA, Fogassi L, Gallese V, Rizzolatti G (2002) Hearing sounds, understanding actions: action representation in mirror neurons. Science 297:846–848 CrossRefGoogle Scholar
  35. 35.
    Umiltà MA, Kohler E, Gallese V, Fogassi L, Fadiga L et al (2001) “I know what you are doing”: a neurophysiological study. Neuron 32:91–101 Google Scholar
  36. 36.
    Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192 CrossRefGoogle Scholar
  37. 37.
    Cochin S, Barthelemy C, Lejeune B, Roux S, Martineau J (1998) Perception of motion and EEG activity in human adults. Electroencephalogr Clin Neurophysiol 107:287–295 CrossRefGoogle Scholar
  38. 38.
    Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L et al (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 13:400–404 Google Scholar
  39. 39.
    Arbib MA (2002) Beyond the mirror system: imitation and evolution of language. In: Dautenhan K, Nehaniv C (eds) Imitation in animals and artifacts. MIT Press, Cambridge, pp 229–280 Google Scholar
  40. 40.
    Meister IG, Boroojerdi B, Foltys H, Sparing R, Huber W, Topper R (2003) Motor cortex hand area and speech: implications for the development of language. Neuropsychologia 41:401–406 CrossRefGoogle Scholar
  41. 41.
    Schütz-Bosbach S, Prinz W (2007) Perceptual resonance: action-induced modulation of perception. Trends Cogn Sci 11:349–355 CrossRefGoogle Scholar
  42. 42.
    Hamilton A, Wolpert D, Frith U (2004) Your own action influences how you perceive another person’s action. Curr Biol 14:493–498 CrossRefGoogle Scholar
  43. 43.
    Repp BH, Knoblich G (2007) Action can affect auditory perception. Psychol Sci 18:6–7 CrossRefGoogle Scholar
  44. 44.
    Wykowska A, Maldonado A, Beetz M, Schubö A (2011) How humans optimize their interaction with the environment: the impact of action context on human perception. Int J Soc Robot 3:223–231 Google Scholar
  45. 45.
    Metta G, Sandini G, Natale L, Craighero L, Fadiga L (2006) Understanding mirror-neurons. A bio-robotic approach. Interact Stud 7:197–231 CrossRefGoogle Scholar
  46. 46.
    Billard A, Matarić MJ (2001) Learning human arm movements by imitation: evaluation of a biologically inspired connectionist architecture. Robot Auton Syst 37:145–160 CrossRefzbMATHGoogle Scholar
  47. 47.
    Matarić MJ (2002) Sensory-motor primitives as a basis for imitation: linking perception to action and biology to robotics. In: Dautenhan K, Nehaniv C (eds) Imitation in animals and artifacts. MIT Press, Cambridge, pp 392–422 Google Scholar
  48. 48.
    Breazeal C, Buchsbaum D, Gray J, Gatenby D, Blumberg B (2005) Learning from and about others: towards using imitation to bootstrap the social understanding of others by robots. Artif Life 11:1–32 CrossRefGoogle Scholar
  49. 49.
    Coradeschi S, Ishiguro H, Asada M, Shapiro SC, Thielscher M, Breazeal C, Matarić MJ, Ishida H (2006) Human-inspired robots. IEEE Intell Syst 21(4):74–85 CrossRefGoogle Scholar
  50. 50.
    Cabibihan JJ, So WC, Nazar M, Ge SS (2009) Pointing gestures for a robot mediated communication interface. In: Xie M et al (eds) ICIRA 2009. LNAI, vol 5928, pp 67–77 Google Scholar
  51. 51.
    Viviani P, Stucchi N (1992) Biological movements look uniform: evidence of motor-perceptual interactions. J Exp Psychol Hum Percept Perform 18:603–623 CrossRefGoogle Scholar
  52. 52.
    Knoblich G, Flach R (2001) Predicting the effects of actions: interactions of perception and action. Psychol Sci 12:467–472 CrossRefGoogle Scholar
  53. 53.
    Calvo-Merino B, Glaser DE, Grèzes J, Passingham RE, Haggard P (2005) Action observation and acquired motor skills: an fMRI study with expert dancers. Cereb Cortex 15:1243–1249 CrossRefGoogle Scholar
  54. 54.
    Calvo-Merino B, Glaser DE, Grèzes J, Passingham RE, Haggard P (2006) Seeing or doing? Influence of visual and motor familiarity in action observation. Curr Biol 16:1–6 CrossRefGoogle Scholar
  55. 55.
    Bosbach S, Cole J, Prinz W, Knoblich G (2005) Inferring another’s expectation from action: the role of peripheral sensation. Nat Neurosci 8:1295–1297 CrossRefGoogle Scholar
  56. 56.
    Mori M (1970) Bukimi no tani. The uncanny valley. Energy 7:33–35. (Originally in Japanese, trans. MacDorman KF, Minato T) Google Scholar
  57. 57.
    Otzop E, Franklin DW, Chaminade T, Cheng G (2005) Human-humanoid interactions: is humanoid robot perceived as human? Int J Humanoid Robot 2:537–559 CrossRefGoogle Scholar
  58. 58.
    Kilner JM, Paulignan Y, Blakemore SJ (2003) An interference effect of observed biological movement on action. Curr Biol 13:522–525 CrossRefGoogle Scholar

Copyright information

© Springer Science & Business Media BV 2011

Authors and Affiliations

  1. 1.Department of PsychologyLudwig-Maximilian UniversityMunichGermany
  2. 2.Department of PsychologyPhilipps UniversityMarburgGermany

Personalised recommendations