International Journal of Social Robotics

, Volume 4, Issue 2, pp 181–199 | Cite as

Grounding the Interaction: Anchoring Situated Discourse in Everyday Human-Robot Interaction

  • Séverin Lemaignan
  • Raquel Ros
  • E. Akin Sisbot
  • Rachid Alami
  • Michael Beetz
Article

Abstract

This paper presents how extraction, representation and use of symbolic knowledge from real-world perception and human-robot verbal and non-verbal interaction can actually enable a grounded and shared model of the world that is suitable for later high-level tasks such as dialogue understanding. We show how the anchoring process itself relies on the situated nature of human-robot interactions. We present an integrated approach, including a specialized symbolic knowledge representation system based on Description Logics, and case studies on several robotic platforms that demonstrate these cognitive capabilities.

Keywords

Cognitive robotics Human-robot interaction Symbol grounding Knowledge representation Human-robot dialogue 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alami R, Chatila R, Fleury S, Ghallab M, Ingrand F (1998) An architecture for autonomy. Int J Robot Res 17(4):315 CrossRefGoogle Scholar
  2. 2.
    Austin J, Urmson J, Sbisà M (1962) How to do things with words. Harvard University Press, Harvard Google Scholar
  3. 3.
    Baerlocher P, Boulic R (2004) An inverse kinematics architecture enforcing an arbitrary number of strict priority levels. Vis Comput Int J Comput Graph 20(6):402–417 Google Scholar
  4. 4.
    Beetz M, Mösenlechner L, Tenorth M (2010) CRAM—a cognitive robot abstract machine for everyday manipulation in human environments. In: IEEE/RSJ international conference on intelligent robots and systems Google Scholar
  5. 5.
    Blisard SN (2005) Modeling spatial referencing language for human-robot interaction. In: Proc IEEE intl workshop on robot and human interactive communication, pp 698–703 CrossRefGoogle Scholar
  6. 6.
    Brick T, Scheutz M (2007) Incremental natural language processing for HRI. In: Proceedings of the ACM/IEEE international conference on human-robot interaction Google Scholar
  7. 7.
    Coradeschi S, Saffiotti A (2003) An introduction to the anchoring problem. Robot Auton Syst 43(2–3):85–96 CrossRefGoogle Scholar
  8. 8.
    Dale R, Reiter E (1995) Computational interpretations of the Gricean maxims in the generation of referring expressions. Cogn Sci 19(2):233–263 CrossRefGoogle Scholar
  9. 9.
    Daoutis M, Coradeshi S, Loutfi A (2009) Grounding commonsense knowledge in intelligent systems. J Ambient Intell Smart Environ:311–321 Google Scholar
  10. 10.
    Flavell JH (1992) Perspectives on perspective taking. Lawrence Erlbaum Associates, pp 107–139 Google Scholar
  11. 11.
    Gruber J (1965) Studies in lexical relations. PhD thesis, Massachusetts Institute of Technology Google Scholar
  12. 12.
    Gunderson J, Gunderson L (2008) Robots, reasoning, and reification. Springer, Berlin Google Scholar
  13. 13.
    Gutiérrez JPM (2001) Directed motion in English and Spanish, vol 11. Universidad de Sevilla, chap Semantic Role Lists Google Scholar
  14. 14.
    Harnad S (1990) The symbol grounding problem. Physica D 42(1–3):335–346 CrossRefGoogle Scholar
  15. 15.
    Hawes N, Hanheide M, Hargreaves J, Page B, Zender H, Jensfelt P (2011) Home alone: autonomous extension and correction of spatial representations. In: Proceedings of the international conference on robotics and automation Google Scholar
  16. 16.
    Huwel S, Wrede B, Sagerer G (2006) Robust speech understanding for multi-modal human-robot communication. In: The 15th IEEE international symposium on robot and human interactive communication Google Scholar
  17. 17.
    Jain D, Mösenlechner L, Beetz M (2009) Equipping robot control programs with first-order probabilistic reasoning capabilities. In: International conference on robotics and automation (ICRA) Google Scholar
  18. 18.
    Kelleher JD, Costello FJ (2009) Applying computational models of spatial prepositions to visually situated dialog. Comput Linguist 35:271–306 CrossRefGoogle Scholar
  19. 19.
    Kipper K, Korhonen A, Ryant N, Palmer M (2008) A large-scale classification of English verbs. Lang Resour Eval 42(1):21–40 CrossRefGoogle Scholar
  20. 20.
    Kruijff G, Lison P, Benjamin T, Jacobsson H, Zender H, Kruijff-Korbayová I, Hawes N (2010) Situated dialogue processing for human-robot interaction. In: Cognitive Systems, pp 311–364 CrossRefGoogle Scholar
  21. 21.
    Lemaignan S, Ros R, Mösenlechner L, Alami R, Beetz M (2010) ORO, a knowledge management platform for cognitive architectures in robotics. In: IEEE/RSJ international conference on intelligent robots and systems Google Scholar
  22. 22.
    Leslie A (2000) Theory of mind as a mechanism of selective attention. In: The new cognitive neurosciences, pp 1235–1247 Google Scholar
  23. 23.
    Matuszek C, Fox D, Koscher K (2010) Following directions using statistical machine translation. In: Proc of int’l conf on human-robot interaction. ACM Press, New York Google Scholar
  24. 24.
    Mavridis N, Roy D (2005) Grounded situation models for robots: bridging language, perception, and action. In: AAAI-05 workshop on modular construction of human-like intelligence Google Scholar
  25. 25.
    Moll H, Tomasello M (2006) Level 1 perspective-taking at 24 months of age. Br J Dev Psychol 24(3):603–614 CrossRefGoogle Scholar
  26. 26.
    Nakamura Y (1990) Advanced robotics: redundancy and optimization. Addison-Wesley/Longman, Boston Google Scholar
  27. 27.
    O’Keefe J (1999) The spatial prepositions. MIT Press, New York Google Scholar
  28. 28.
    Regier T, Carlson L (2001) Grounding spatial language in perception: an empirical and computational investigation. J Exp Psychol Google Scholar
  29. 29.
    Ros R, Lemaignan S, Sisbot EA, Alami R, Steinwender J, Hamann K, Warneken F (2010) Which one? Grounding the referent based on efficient human-robot interaction. In: 19th IEEE international symposium in robot and human interactive communication Google Scholar
  30. 30.
    Ros R, Sisbot EA, Lemaignan S, Pandey A, Alami R (2010) Robot, tell me what you know about …?: Expressing robot’s knowledge through interaction. In: Proceedings of the ICRA workshop on interactive communication for autonomous intelligent robots (ICAIR), pp 26–29 Google Scholar
  31. 31.
    Roy D, Reiter E (2005) Connecting language to the world. Artif Intell Google Scholar
  32. 32.
    Scassellati B (2002) Theory of mind for a humanoid robot. Auton Robots 12(1):13–24 MATHCrossRefGoogle Scholar
  33. 33.
    Searle JR (1976) A classification of illocutionary acts. Lang Soc 5(01):1–23 CrossRefGoogle Scholar
  34. 34.
    Searle JR (1980) Minds, brains, and programs. Behav Brain Sci 3:417–424 CrossRefGoogle Scholar
  35. 35.
    Shapiro S, Bona J (2009) The GLAIR cognitive architecture. In: AAAI fall symposium series Google Scholar
  36. 36.
    Sisbot E, Ros R, Alami R (2011) Situation assessment for human-robot interaction. In: 20th IEEE international symposium in robot and human interactive communication Google Scholar
  37. 37.
    Sloman A (2007) Why symbol-grounding is both impossible and unnecessary, and why theory-tethering is more powerful anyway. Tech rep, Research Note No COSY-PR-0705 Google Scholar
  38. 38.
    Sloman A (2009) Some requirements for human-like robots: why the recent over-emphasis on embodiment has held up progress. Creating Brain-like Intelligence, pp 248–277 Google Scholar
  39. 39.
    Steels L (2007) The symbol grounding problem has been solved. So what’s next? In: Symbols, embodiment and meaning. Oxford University Press, Oxford Google Scholar
  40. 40.
    Suh I, Lim G, Hwang W, Suh H, Choi J, Park Y (2007) Ontology-based multi-layered robot knowledge framework (omrkf) for robot intelligence. In: IEEE/RSJ international conference on intelligent robots and systems Google Scholar
  41. 41.
    Tenorth M, Beetz M (2009) KnowRob—knowledge processing for autonomous personal robots. In: IEEE/RSJ international conference on intelligent robots and systems Google Scholar
  42. 42.
    Tversky B, Lee P, Mainwaring S (1999) Why do speakers mix perspectives? Spatial Cogn Comput 1(4):399–412 CrossRefGoogle Scholar
  43. 43.
    Vrecko A, Skocaj D, Hawes N, Leonardis A (2009) A computer vision integration model for a multi-modal cognitive system. In: IEEE/RSJ international conference on intelligent robots and systems. IEEE, New York, pp 3140–3147 Google Scholar
  44. 44.
    Zender H, Kruijff G, Kruijff-Korbayová I (2009) Situated resolution and generation of spatial referring expressions for robotic assistants. In: Proceedings of the twenty-first international joint conference on artificial intelligence, pp 1604–1609 Google Scholar
  45. 45.
    Ziemke T (1999) Rethinking grounding. In: Understanding representation in the cognitive sciences, pp 177–190 Google Scholar

Copyright information

© Springer Science & Business Media BV 2011

Authors and Affiliations

  • Séverin Lemaignan
    • 1
    • 2
    • 3
  • Raquel Ros
    • 1
    • 2
  • E. Akin Sisbot
    • 1
    • 2
  • Rachid Alami
    • 1
    • 2
  • Michael Beetz
    • 3
  1. 1.CNRS—LAASToulouseFrance
  2. 2.Université de Toulouse, UPS, INSA, INP, ISAE, LAASToulouseFrance
  3. 3.Intelligent Autonomous SystemsTechnische Universität MünchenMunichGermany

Personalised recommendations