International Journal of Social Robotics

, Volume 3, Issue 1, pp 53–67 | Cite as

Evaluating Human-Robot Interaction

Focusing on the Holistic Interaction Experience
  • James E. Young
  • JaYoung Sung
  • Amy Voida
  • Ehud Sharlin
  • Takeo Igarashi
  • Henrik I. Christensen
  • Rebecca E. Grinter
Article

Abstract

The experience of interacting with a robot has been shown to be very different in comparison to people’s interaction experience with other technologies and artifacts, and often has a strong social or emotional component—a difference that poses potential challenges related to the design and evaluation of HRI. In this paper we explore this difference, and its implications on evaluating HRI. We outline how this difference is due in part to the general complexity of robots’ overall context of interaction, related to their dynamic presence in the real world and their tendency to invoke a sense of agency.

We suggest that due to these differences HCI evaluation methods should be applied to HRI with care, and we present a survey of select HCI evaluation techniques from the perspective of the unique challenges of robots. We propose a view on social interaction with robots that we call the holistic interaction experience, and introduce a set of three perspectives for exploring social interaction with robots: visceral factors of interaction, social mechanics, and social structures. We demonstrate how our three perspectives can be used in practice, both as guidelines to discuss and categorize robot interaction, and as a component in the evaluation process. Further, we propose an original heuristic for brainstorming various possibilities of interaction experiences based on a concept we call the interaction experience map.

Keywords

Human-robot interaction Evaluation methods Frameworks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrett HC, Todd PM, Miller GF et al (2005) Accurate judgments of intention from motion cues alone: a cross-cultural study. Evol Human Behav 26(4):313–331. doi:10.1016/j.evolhumbehav.2004.08.015 CrossRefGoogle Scholar
  2. 2.
    Bartneck C, Forlizzi J (2004) A design-centred framework for social human-robot interaction. In: IEEE international workshop on robot and human interactive communication, 2004. ROMAN’04, Kurashiki, Okayama, Japan, 20–22 September 2004. IEEE Comput Soc, Los Alamitos, pp 581–594. doi:10.1109/ROMAN.2004.1374827 Google Scholar
  3. 3.
    Bartneck C, van der Hoek M, Mubin O et al (2007) “Daisy, Daisy, give me your answer do!”: switching off a robot. In: Proceedings of the 2nd ACM/IEEE conference on human-robot interaction, 2007. HRI’07, Washington, DC, USA, 10–12 March 2007. ACM, New York, pp 217–222. doi:10.1145/1228716.1228746 CrossRefGoogle Scholar
  4. 4.
    Bartneck C, Verbunt M, Mubin O et al (2007) To kill a mockingbird robot. In: Proceedings of the 2nd ACM/IEEE conference on human-robot interaction, 2007. HRI’07, Washington, DC, USA, 10–12 March 2007. ACM, New York, pp 81–87. doi:10.1145/1228716.1228728 CrossRefGoogle Scholar
  5. 5.
    Bates J (1994) The role of emotion in believable agents. Commun ACM 37(7):122–125. doi:10.1145/176789.176803 CrossRefGoogle Scholar
  6. 6.
    Bethel CL, Bringes C, Murphy RR (2009) Non-facial and non-verbal affective expression in appearance-constrained robots for use in victim management: robots to the rescue! In: Proceedings of the 4th ACM/IEEE conference on human-robot interaction, 2009. HRI’09, San Diego, California, USA, 11–13 March 2009. ACM, New York, pp 191–192. doi:10.1145/1514095.1514130 CrossRefGoogle Scholar
  7. 7.
    Beyer H, Holtzblatt K (1998) Contextual design: defining customer-centered systems. Morgan Kauffman, San Mateo Google Scholar
  8. 8.
    Boehner K, DePaula R, Dourish P et al (2007) How emotion is made and measured. Int J Hum-Comput Stud (IJHCS) 65(4):275–291. doi:10.1016/j.ijhcs.2006.11.016 CrossRefGoogle Scholar
  9. 9.
    Breazeal CL (2003) Emotion and sociable humanoid robots. Int J Hum-Comput Stud (IJHCS) 59(1–2):119–155. doi:10.1016/S1071-5819(03)00018-1 CrossRefGoogle Scholar
  10. 10.
    Breazeal CL (2003) Toward sociable robots. Robot Autonom Syst 42(3–4):167–175. doi:10.1016/S0921-8890(02)00373-1 MATHCrossRefGoogle Scholar
  11. 11.
    Breazeal CL, Brooks AG, Gray J et al (2004) Tutelage and collaboration for humanoid robots. Int J Human Robot (IJHR) 1(2):315–348. doi:10.1142/S0219843604000150 CrossRefGoogle Scholar
  12. 12.
    Burgard W, Cremers AB, Fox D et al (1999) Experiences with an interactive museum tour-guide robot. Artif Intell 114(1–2):3–55. doi:10.1016/S0004-3702(99)00070-3 MATHCrossRefGoogle Scholar
  13. 13.
    Crabtree A, Benford S, Greenhalgh C et al (2006) Supporting ethnographic studies of ubiquitous computing in the wild. In: Proceedings of the 6th conference on designing interactive systems, 2006. DIS’06, University Park, PA, US, 26–28 June 2006. ACM, New York, pp 60–69. doi:10.1145/1142405.1142417 CrossRefGoogle Scholar
  14. 14.
    Cramer H, Goddijn J, Wielinga B et al (2010) Effects of (in)accurate empathy and situational valence on attitudes towards robots. In: Proceedings of the 5th ACM/IEEE conference on human-robot interaction, 2010. HRI’10, Osaka, Japan, 2–5 March 2010. ACM, New York, pp 141–142. doi:10.1145/1734454.1734513 CrossRefGoogle Scholar
  15. 15.
    Cramer H, Kemper N, Amin A et al (2009) ‘Give me a hug:’ the effects of touch and autonomy on people’s responses to embodied social agents. Comput Animat Virtual Worlds 20(2–3):2–3. doi:10.1002/cav.317 Google Scholar
  16. 16.
    Csikszentmihalyi M (1990) Flow: the psychology of optimal experience. Harper Collins, New York Google Scholar
  17. 17.
    Dautenhahn K (2002) Design spaces and niche spaces of believable social robots. In: IEEE international workshop on robot and human interactive communication, 2002. ROMAN’02, Berlin, Germany, 25–27 September 2002. IEEE Comput Soc, Los Alamitos, pp 192–197. doi:10.1109/ROMAN.2002.1045621 Google Scholar
  18. 18.
    Dennett D (1987) The intentional stance. MIT Press, Cambridge Google Scholar
  19. 19.
    Desmet PMA (2005) Measuring emotions: development and application of an instrument to measure emotional responses to products. In: Blythe MA, Overbeeke K, Monk AF et al (eds) Funology: from usability to enjoyment. Kluwer Academic, Norwell Google Scholar
  20. 20.
    Dewey J (1980) Art as experience. Perigee Books, New York Google Scholar
  21. 21.
    Dix A, Finlay J, Abowd GD et al (1998) Human-computer interaction, 2nd edn. Prentice Hall, New York Google Scholar
  22. 22.
    Dourish P (2001) Where the action is: the foundation of embodied interaction. MIT Press, Cambridge Google Scholar
  23. 23.
    Drury JL, Scholtz J, Yanco HA (2003) Awareness in human-robot interactions. In: Proceedings of the IEEE international conference on systems, man and cybernetics, 2003. SMC’03, Washington, DC, USA, 5–8 October 2003, vol 1. IEEE Comput Soc, Los Alamitos, pp 912–918. doi:10.1109/ICSMC.2003.1243931 Google Scholar
  24. 24.
    Eberts RE (1994) User interface design. Prentice Hall, New York MATHGoogle Scholar
  25. 25.
    Fernaeus Y, Ljungblad S, Jacobsson M et al (2009) Where third wave HCI meets HRI: report from a workshop on user-centred design of robots. In: Adjunct proceedings of the ACM/IEEE international conference on human-robot interaction (late-breaking abstracts), 2009. HRI LBA’09, San Diego, California, USA, 11–13 March 2009. ACM, New York, pp 293–294. doi:10.1145/1514095.1514182 Google Scholar
  26. 26.
    Forlizzi J (2007) How robotic products become social products: an ethnographic study of cleaning in the home. In: Proceedings of the 2nd ACM/IEEE conference on human-robot interaction, 2007. HRI’07, Washington, DC, USA, 10–12 March 2007. ACM, New York, pp 129–136. doi:10.1145/1228716.1228734 CrossRefGoogle Scholar
  27. 27.
    Forlizzi J, DiSalvo C (2006) Service robots in the domestic environment: a study of the roomba vacuum in the home. In: Proceedings of the 1st ACM SIGCHI/SIGART conference on human-robot interaction, 2006. HRI’06, Salt Lake City, USA, 2–4 March 2006. ACM, New York, pp 258–256. doi:10.1145/1121241.1121286 CrossRefGoogle Scholar
  28. 28.
    Friedman B, Kahn PHJr, Hagman J (2003) Hardware companions?—what online AIBO discussion forums reveal about the human-robotic relationship. In: ACM conference on human factors in computing sysems, 2003. CHI’03, Fort Lauderdale, USA, 5–10 April 2003. ACM, New York, pp 273–280. doi:10.1145/642611.642660 CrossRefGoogle Scholar
  29. 29.
    Fussell SR, Kiesler S, Setlock LD et al (2008) How people anthropomorphize robots. In: Proceedings of the 3rd ACM/IEEE conference on human-robot interaction, 2008. HRI’08, Amsterdam, The Netherlands, 12–15 March 2008. ACM, New York, pp 145–152. doi:10.1145/1349822.1349842 CrossRefGoogle Scholar
  30. 30.
    Garreau J (2007) Bots on the ground. Washington Post, WWW, http://www.washingtonpost.com/wp-dyn/content/article/2007/05/05/AR2007050501009_pf.html. Visited April 9th, 2008
  31. 31.
    Gaver B, Dunne T, Pacenti E (1999) Design: cultural probes. Interactions 6(1):21–29. doi:10.1145/291224.291235 CrossRefGoogle Scholar
  32. 32.
    Gockley R, Forlizzi J, Simmons R (2006) Interactions with a moody robot. In: Proceedings of the 1st ACM SIGCHI/SIGART conference on human-robot interaction, 2006. HRI’06, Salt Lake City, USA, 2–4 March 2006. ACM, New York, pp 186–193. doi:10.1145/1121241.1121274 CrossRefGoogle Scholar
  33. 33.
    Gockley R, Forlizzi J, Simmons R (2007) Natural person-following behavior for social robots. In: Proceedings of the 2nd ACM/IEEE conference on human-robot interaction, 2007. HRI’07, Washington, DC, USA, 10–12 March 2007. ACM, New York, pp 17–24. doi:10.1145/1228716.1228720 CrossRefGoogle Scholar
  34. 34.
    Greenberg S (2003) Working through task-centered system design. In: Diaper D, Stanton N (eds) The handbook of task analysis for human-computer interaction. Lawrence Erlbaum Associates, Inc., Mahwah Google Scholar
  35. 35.
    Groom V, Chen J, Johnson T et al (2010) Critic, compatriot, or chump?: Responses to robot blame attribution. In: Proceedings of the 5th ACM/IEEE conference on human-robot interaction, 2010. HRI’10, Osaka, Japan, 2–5 March 2010. ACM, New York, pp 211–218. doi:10.1145/1734454.1734545 CrossRefGoogle Scholar
  36. 36.
    Guo C, Sharlin E (2008) Exploring the use of tangible user interfaces for human-robot interaction: a comparative study. In: ACM conference on human factors in computing sysems, 2007. CHI’07, San Jose, California, USA, 28 April–3 May 2007. ACM, New York, pp 121–130. doi:10.1145/1357054.1357076 Google Scholar
  37. 37.
    Harrison S, Dourish P (1996) Re-place-ing space: the roles of place and space in collaborative systems. In: Proceedings of the ACM conference on computer supported cooperative work, 1996. CSCW’96, Boston, US, 16–20 November 1996. ACM, New York. doi:10.1145/240080.240193 Google Scholar
  38. 38.
    Heider F, Simmel M (1944) An experimental study of apparent behavior. Am J Psychol 57:243–259 CrossRefGoogle Scholar
  39. 39.
    Ho CC, MacDorman KF, Pramono ZADD (2008) Human emotion and the uncanny valley: a GLM, MDS, and isomap analysis of robot video ratings. In: Proceedings of the 3rd ACM/IEEE conference on human-robot interaction, 2008. HRI’08, Amsterdam, The Netherlands, 12–15 March 2008. ACM, New York, pp 169–176. doi:10.1145/1349822.1349845 CrossRefGoogle Scholar
  40. 40.
    Holz T, Dragone M, O’Hare MP (2009) Where robots and virtual agents meet: a survey of social interaction research across milgram’s reality-virtuality continuum. Int J Soc Robot 1(1):83–93. doi:10.1007/s12369-008-0002-2 CrossRefGoogle Scholar
  41. 41.
    Höök K (2005) User-centered design and evaluation of affective interfaces. In: From brows to trust. Lecture notes in computer science, vol 7. Springer, Berlin, New York, Heidelberg CrossRefGoogle Scholar
  42. 42.
    Höök K, Sengers P, Andersson G (2003) Sense and sensibility: evaluation and interactive art. In: ACM conference on human factors in computing sysems, 2003. CHI’03, Fort Lauderdale, USA, 5–10 April 2003. ACM, New York, pp 241–248. doi:10.1145/642611.642654 CrossRefGoogle Scholar
  43. 43.
    Hornecker E, Buur J (2006) Getting a grip on tangible interaction: a framework on physical space and social interaction. In: ACM conference on human factors in computing sysems, 2006. CHI’06, Montréal, Quèbec, 22–28 April 2006. ACM, New York, pp 437–446. doi:10.1145/1124772.1124838 Google Scholar
  44. 44.
    Hüttenrauch H, Eklundh KS (2002) Fetch-and-carry with CERO: observations from a long-term user study with a service robot. In: IEEE international workshop on robot and human interactive communication, 2002. ROMAN’02, Berlin, Germany, 25–27 September 2002. IEEE Comput Soc, Los Alamitos, pp 158–163. doi:10.1109/ROMAN.2002.1045615 Google Scholar
  45. 45.
    Isbister K, Höök K, Sharp M et al (2006) The sensual evaluation instrument: developing an affective evaluation tool. In: ACM conference on human factors in computing sysems, 2006. CHI’06, Montréal, Quèbec, 22–28 April 2006. ACM, New York, pp 1163–1172. doi:10.1145/1124772.1124946 Google Scholar
  46. 46.
    Kanda T, Sato R, Saiwaki N et al (2007) A two-month field trial in an elementary school for long-term human-robot interaction. IEEE Trans Robot 23(5):962–971. doi:10.1109/TRO.2007.904904 CrossRefGoogle Scholar
  47. 47.
    Kiesler S, Hinds P (2004) Introduction to this special issue on human-robot interaction. Human Comput Interact 19(1/2):1–8. doi:10.1109/TSMCA.2005.850577 CrossRefGoogle Scholar
  48. 48.
    Landsberger HA (1958) Hawthorne revisited. Ithaca Press, Ithaca Google Scholar
  49. 49.
    Lee H, Kim HJ, Kim C (2007) Autonomous behavior design for robotic appliances. In: Proceedings of the 2nd ACM/IEEE conference on human-robot interaction, 2007. HRI’07, Washington, DC, USA, 10–12 March 2007. ACM, New York, pp 201–208. doi:10.1145/1228716.1228744 CrossRefGoogle Scholar
  50. 50.
    Lee MK, Forlizzi J, Rybski PE et al (2009) The snackbot: documenting the design of a robot for long-term human-robot interaction. In: Proceedings of the 4th ACM/IEEE conference on human-robot interaction, 2009. HRI’09, San Diego, California, USA, 11–13 March 2009. ACM, New York, pp 7–14. doi:10.1145/1514095.1514100 CrossRefGoogle Scholar
  51. 51.
    Lockerd A, Breazeal CL (2004) Tutelage and socially guided robot learning. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, 2004. IROS’04, Sendai, Japan, 28 September–2 October 2004, vol 4. IEEE Comput Soc, Los Alamitos, pp 3475–3480. doi:10.1109/IROS.2004.1389954 Google Scholar
  52. 52.
    Marti P, Pollini A, Rullo A et al (2005) Engaging with artificial pets. In: Proceedings of the annual conference of the European association of cognitive ergonomics, 2005. EACE’05, Chania, Greece, 29 September–1 October 2005. ACM, New York, pp 99–106 Google Scholar
  53. 53.
    Michalowski MP, Sabanovic S, Kozima H (2007) A dancing robot for rhythmic social interaction. In: Proceedings of the 2nd ACM/IEEE conference on human-robot interaction, 2007. HRI’07, Washington, DC, USA, 10–12 March 2007. ACM, New York, pp 89–96. doi:10.1145/1228716.1228729 CrossRefGoogle Scholar
  54. 54.
    Mori M (1970) Bukimi no tani: the uncanny valley (in Japanese). Energy 7:33–35. English translation provided at CogSci’05 workshop: Toward social mechanisms of android science. Views of the Uncanny Valley. WWW, http://www.androidscience.com/theuncannyvalley/proceedings2005/uncannyvalley.html Google Scholar
  55. 55.
    Muhl C, Nagai T (2007) Does disturbance discourage people from communicating with a robot? In: IEEE international workshop on robot and human interactive communication, 2009. ROMAN’09, Toyama, Japan, 27 September–2 October 2009. IEEE Comput Soc, Los Alamitos, pp 1137–1142. doi:10.1109/ROMAN.2007.4415251 Google Scholar
  56. 56.
    Mutlu B, Shiwa T, Kanda T et al (2009) Footing in human-robot conversations: how robots might shape participant roles using gaze cues. In: Proceedings of the 4th ACM/IEEE conference on human-robot interaction, 2009. HRI’09, San Diego, California, USA, 11–13 March 2009. ACM, New York, pp 61–68. doi:10.1109/ROMAN.2007.4415251 CrossRefGoogle Scholar
  57. 57.
    Nass C, Moon Y (2000) Machines and mindlessness: social responses to computers. J Soc Issues 56(1):81–103. doi:10.1111/0022-4537.00153 CrossRefGoogle Scholar
  58. 58.
    Norman DA (1988) The design of everyday things. Doubleday, New York Google Scholar
  59. 59.
    Norman DA (2004) Emotional design: why we love (or hate) everyday things. Basic Books, New York Google Scholar
  60. 60.
    Pacchierotti E, Christensen HI, Jensfelt P (2006) Design of an office guide robot for social interaction studies. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, 2006. IROS’06, Beijing, China, 9–15 October 2006. IEEE Comput Soc, Los Alamitos, pp 4965–4970. doi:10.1109/IROS.2006.282519 CrossRefGoogle Scholar
  61. 61.
    Picard RW (1999) Affective computing for HCI. In: Proceedings of the HCI international conference on human-computer interaction, 1999. HCI’99, Munich, Germany, 22–26 August 1999. Lawrence Erlbaum Associates, Inc., Mahwah, pp 829–833 Google Scholar
  62. 62.
    Reeves B, Nass C (1996) The media equation: how people treat computers, television, and new media like real people and places. CSLI Publications, Center for the Study of Language and Information Leland Standford Junior University, Cambridge, UK, first paperback edition Google Scholar
  63. 63.
    Richer J, Drury JL (2003) A video game-based framework for analyzing human-robot interaction: characterizing interface design in real-time interactive multimedia applications. In: Proceedings of the 1st ACM SIGCHI/SIGART conference on human-robot interaction, 2006. HRI’06, Salt Lake City, USA, 2–4 March 2006. ACM, New York, pp 266–273. doi:10.1145/1121241.1121287 Google Scholar
  64. 64.
    Sanders EBN (1992) Converging perspectives: product development research for the 1990s. Des Manage J 3(4):49–54 Google Scholar
  65. 65.
    Sengers P, Gaver B (2006) Staying open to interpretation: engaging multiple meanings in design and evaluation. In: Proceedings of the 6th conference on designing interactive systems, 2006. DIS’06, University Park, PA, US, 26–28 June 2006. ACM, New York, pp 99–108. doi:10.1145/1142405.1142422 CrossRefGoogle Scholar
  66. 66.
    Sharp H, Rogers Y, Preece J (2007) Interaction design: beyond human-computer interaction, 2nd edn. Wiley, New York Google Scholar
  67. 67.
    Short E, Hart J, Vu M et al (2010) No fair!!: an interaction with a cheating robot. In: Proceedings of the 5th ACM/IEEE conference on human-robot interaction, 2010. HRI’10, Osaka, Japan, 2–5 March 2010. ACM, New York, pp 219–226. doi:10.1145/1734454.1734546 CrossRefGoogle Scholar
  68. 68.
    Sidner CL, Lee C, Morency LP et al (2006) The effect of head-nod recognition in human-robot conversation. In: Proceedings of the 1st ACM SIGCHI/SIGART conference on human-robot interaction, 2006. HRI’06, Salt Lake City, USA, 2–4 March 2006. ACM, New York, pp 290–296. doi:10.1145/1121241.1121291 CrossRefGoogle Scholar
  69. 69.
    Staudte M, Crocker MW (2009) Visual attention in spoken human-robot interaction. In: Proceedings of the 4th ACM/IEEE conference on human-robot interaction, 2009. HRI’09, San Diego, California, USA, 11–13 March 2009. ACM, New York, pp 77–84. doi:10.1145/1514095.1514111 CrossRefGoogle Scholar
  70. 70.
    Strauss A, Corbin J (1998) Basics of qualitative research: techniques and procedures for developing grounded theory. Sage, Thousand Oaks Google Scholar
  71. 71.
    Sung J, Grinter RE, Christensen HI (2009) “Pimp my Roomba”: designing for personalization. In: ACM conference on human factors in computing sysems, 2009. CHI’09, Boston, USA, 4–9 April 2009. ACM, New York, pp 193–196. doi:10.1145/1518701.1518732 Google Scholar
  72. 72.
    Sung J, Grinter RE, Christensen HI et al (2008) Housewives or technophiles?: understanding domestic robot owners. In: Proceedings of the 3rd ACM/IEEE conference on human-robot interaction, 2008. HRI’08, Amsterdam, The Netherlands, 12–15 March 2008. ACM, New York, pp 129–136. doi:10.1145/1349822.1349840 CrossRefGoogle Scholar
  73. 73.
    Sung J, Guo L, Grinter RE et al (2007) “My Roomba is Rambo”: intimate home appliances. In: Proceedings of the international conference on ubiquitous computing, 2007. UBICOMP’07, Innbruck, Austria, 16–17 September 2007. Lecture notes in computer science, vol 4717. Springer, Berlin, New York, Heidelberg. doi:10.1007/978-3-540-74853-3_9 Google Scholar
  74. 74.
    Takayama L, Groom V, Nass C (2009) I’m sorry, Dave: I’m afraid I won’t do that: social aspects of human-agent conflict. In: ACM conference on human factors in computing sysems, 2009. CHI’09, Boston, USA, 4–9 April 2009. ACM, New York, pp 2099–2108. doi:10.1145/1518701.1519021 Google Scholar
  75. 75.
    Takayama L, Ju W, Nass C (2008) Beyond dirty, dangerous and dull: what everyday people think robots should do. In: Proceedings of the 3rd ACM/IEEE conference on human-robot interaction, 2008. HRI’08, Amsterdam, The Netherlands, 12–15 March 2008. ACM, New York, pp 25–32. doi:10.1145/1349822.1349827 CrossRefGoogle Scholar
  76. 76.
    Tanaka F, Movellan JR, Fortenberry B et al (2006) Daily HRI evaluation at a classroom environment: reports from dance interaction experiments. In: Proceedings of the 1st ACM SIGCHI/SIGART conference on human-robot interaction, 2006. HRI’06, Salt Lake City, USA, 2–4 March 2006. ACM, New York, pp 3–9. doi:10.1145/1121241.1121245 CrossRefGoogle Scholar
  77. 77.
    Tolmie P, Pycock J, Diggins T et al (2002) Unremarkable computing. In: ACM conference on human factors in computing sysems, 2002. CHI’02, Minneapolis, MN, USA, 20–25 April 2002. ACM, New York, pp 399–406. doi:10.1145/503376.503448 Google Scholar
  78. 78.
    Voida A, Grinter RE, Ducheneaut N et al (2005) Listening in: practices surrounding iTunes music sharing. In: ACM conference on human factors in computing sysems, 2005. CHI’05, Portland, OR, USA, 2–7 April 2005. ACM, New York, pp 191–200. doi:10.1145/1054972.1054999 Google Scholar
  79. 79.
    Yanco HA, Drury JL (2004) Classifying human-robot interaction: an updated taxonomy. In: Proceedings of the IEEE international conference on systems, man and cybernetics, 2004. SMC’04, The Hague, The Netherlands, 10–13 October 2004, vol 3. IEEE Comput Soc, Los Alamitos, pp 2841–2846. doi:10.1109/ICSMC.2004.1400763 Google Scholar
  80. 80.
    Young JE, Hawkins R, Sharlin E et al (2009) Toward acceptable domestic robots: applying insights from social psychology. Int J Soc Robot 1(1):95–108. doi:10.1007/s12369-008-0006-y CrossRefGoogle Scholar
  81. 81.
    Young JE, Xin M, Sharlin E (2007) Robot expressionism through cartooning. In: Proceedings of the 2nd ACM/IEEE conference on human-robot interaction, 2007. HRI’07, Washington, DC, USA, 10–12 March 2007. ACM, New York, pp 309–316. doi:10.1145/1228716.1228758 CrossRefGoogle Scholar

Copyright information

© Springer Science & Business Media BV 2010

Authors and Affiliations

  • James E. Young
    • 1
    • 2
  • JaYoung Sung
    • 4
  • Amy Voida
    • 1
  • Ehud Sharlin
    • 1
  • Takeo Igarashi
    • 2
    • 3
  • Henrik I. Christensen
    • 4
  • Rebecca E. Grinter
    • 4
  1. 1.University of CalgaryCalgaryCanada
  2. 2.The University of TokyoTokyoJapan
  3. 3.JST ERATOTokyoJapan
  4. 4.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations