International Journal of Social Robotics

, Volume 2, Issue 3, pp 329–343 | Cite as

Synthesizing Robot Motions Adapted to Human Presence

A Planning and Control Framework for Safe and Socially Acceptable Robot Motions
  • Emrah Akin Sisbot
  • Luis F. Marin-Urias
  • Xavier Broquère
  • Daniel Sidobre
  • Rachid Alami
Article

Abstract

With robotics hardware becoming more and more safe and compliant, robots are not far from entering our homes. The robot, that will share the same environment with humans, will be expected to consider the geometry of the interaction and to perform intelligent space sharing.

In this case, even the simplest tasks, e.g. handing over an object to a person, raise important questions such as: where the task should be achieved?; how to place the robot relatively to the human in order to ease the human action?; how to hand over an object?; and more generally, how to move in a relatively constrained environment in the presence of humans?

In this paper we present an integrated motion synthesis framework from planning to execution that is especially designed for a robot that interacts with humans. This framework, composed of Perspective Placement, Human Aware Manipulation Planner and Soft Motion Trajectory Planner, generates robot motions by taking into account human’s safety; his vision field and his perspective; his kinematics and his posture along with the task constraints.

Keywords

Human-Robot Interaction Motion Planning Perspective Taking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alami R, Chatila R, Fleury S, Ghallab M, Ingrand F (1998) An architecture for autonomy. Int J Robot Res 17:315–337 CrossRefGoogle Scholar
  2. 2.
    Alami R, Albu-Schaeffer A, Bicchi A, Bischoff R, Chatila R, Luca AD, Santis AD, Giralt G, Guiochet J, Hirzinger G, Ingrand F, Lippiello V, Mattone R, Powell D, Sen S, Siciliano B, Tonietti G, Villani L (2006a) Safe and dependable physical human-robot interaction in anthropic domains: state of the art and challenges. In: Bicchi A, Luca AD (eds) Proceedings IROS workshop on pHRI. Physical human-robot interaction in anthropic domains, Beijing, China Google Scholar
  3. 3.
    Alami R, Chatila R, Clodic A, Fleury S, Herrb M, Montreuil V, Sisbot EA (2006b) Towards human-aware cognitive robots. In: The AAAI-06 workshop on cognitive robotics, COGROB 2006. The fifth international cognitive robotics workshop, Boston, MA, USA Google Scholar
  4. 4.
    Amirabdollahian F, Loureiro R, Harwin W (2002) Minimum jerk trajectory control for rehabilitation and haptic applications. In: IEEE international conference on robotics and automation, ICRA, May, pp 3380–3385 Google Scholar
  5. 5.
    Andersson RL (1989) Aggressive trajectory generator for a robot ping-pong player. IEEE Control Syst Mag 9:15–20 CrossRefGoogle Scholar
  6. 6.
    Baerlocher P, Boulic R (2004) An inverse kinematics architecture enforcing an arbitrary number of strict priority levels. Vis Comput Int J Comput Graph 20(6):402–417 Google Scholar
  7. 7.
    Berlin M, Gray J, Thomaz AL, Breazeal C (2006) Perspective taking: an organizing principle for learning in human-robot interaction. International conf on artificial intelligence. AAAI, Boston Google Scholar
  8. 8.
    Bicchi A, Tonietti G (2004) Fast and soft arm tactics: dealing with the safety-performance trade-off in robot arms design and control. Robot Automation Mag 11(2):22–33 CrossRefGoogle Scholar
  9. 9.
    Breazeal C, Berlin M, Brooks A, Gray J, Thomaz AL (2006) Using perspective taking to learn from ambiguous demonstrations. Robot Auton Syst 54(5):385–393 CrossRefGoogle Scholar
  10. 10.
    Broquère X, Sidobre D, Herrera-Aguilar I (2008) Soft motion trajectory planner for service manipulator robot. In: IEEE/RSJ international conference on intelligent robots and systems, IROS, Nice, France Google Scholar
  11. 11.
    Cambon S, Alami R, Gravot F (2009) A hybrid approach to intricate motion, manipulation and task planning. Int J Robot Res 28(1):104–126 CrossRefGoogle Scholar
  12. 12.
    Chatila R, Alami R, Simeon T, Pettre J, Jaillet L (2002) Safe, reliable and friendly interaction between humans and humanoids. In: IARP international workshop on humanoid and human friendly robotics, Tsukuba, Japan, pp 83–87 Google Scholar
  13. 13.
    Cogniron (2008) Cogniron project ra3 final deliverable. Tech Rep 08866, LAAS/CNRS Google Scholar
  14. 14.
    Dautenhahn K, Walters M, Woods S, Koay KL, Nehaniv CL, Sisbot EA, Alami R, Siméon T (2006) How may i serve you? A robot companion approaching a seated person in a helping context. In: ACM SIGCHI/SIGART international conference on human-robot interaction, HRI, Utah, USA, pp 172–179 Google Scholar
  15. 15.
    Faust J, Simon C, Smart WD (2006) A video game-based mobile robot simulation environment In: Proc of IEEE/RSJ international conference on intelligent robots and systems, IROS, Beijing, China Google Scholar
  16. 16.
    Flash T, Hogan N (1984) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5:1688–1703 Google Scholar
  17. 17.
    Flavell JH (1992) Perspectives on perspective taking. Erlbaum, Hillsdale, pp 107–139 Google Scholar
  18. 18.
    Fleury S, Herrb M, Chatila R (1997) Genom: a tool for the specification and the implementation of operating modules in a distributed robot architecture. In: IEEE/RSJ international conference on intelligent robots and systems, IROS, Grenoble, France, pp 842–848 Google Scholar
  19. 19.
    Foissotte T, Stasse O, Escande A, Wieber PB, Kheddar A (2009) A two-steps next best view algorithm for autonomous 3d object modeling by a humanoid robot. In: IEEE international conference on robotics and automation, Kobe, Japan Google Scholar
  20. 20.
    Fong T, Nourbakhsh I, Dautenhahn K (2003) A survey of socially interactive robots. Robot Auton Syst 42:3–4 Google Scholar
  21. 21.
    Haddadin S, Albu-Schaffer A, Hirzinger G (2007) Safety evaluation of physical human-robot interaction via crash-testing, robotics. In: Robotics: science and systems conference, RSS, Atlanta, USA Google Scholar
  22. 22.
    Haddadin S, Albu-Schaffer A, Hirzinger G (2008) The role of the robot mass and velocity in physical human-robot interaction—part i: Non-constrained blunt impacts. In: IEEE international conference on robotics and automation, ICRA, Pasadena, USA, pp 1331–1338 Google Scholar
  23. 23.
    Hall ET (1966) The hidden dimension. Doubleday, Garden City Google Scholar
  24. 24.
    Herrera I, Sidobre D (2005) On-line trajectory planning of robot manipulator’s end effector in Cartesian space using quaternions. In: 15th int symposium on measurement and control in robotics Google Scholar
  25. 25.
    Hoffman G, Breazeal C (2007) Cost-based anticipatory action selection for human–robot fluency. IEEE Trans Robot 23(5):952–961 CrossRefGoogle Scholar
  26. 26.
    Hogan N (1984) An organizing principle for a class of voluntary movements. J Neurosci 4:2745–2754 Google Scholar
  27. 27.
    Huber M, Rickert M, Knoll A, Brandt T, Glasauer S (2008) Human-robot interaction in handing-over tasks. In: IEEE international workshop on robot and human interactive communication, RO-MAN, Munich, Germany Google Scholar
  28. 28.
    Huettenrauch H, Eklundth KS, Green A, Topp EA (2006) Investigating spatial relationships in human-robot interaction. In: Proc (IEEE/RSJ) international conference on intelligent robots and systems, Beijin, China Google Scholar
  29. 29.
    Ikuta K, Ishii H, Nokata M (2003) Safety evaluation method of design and control for human-care robots. Int J Robot Res 22(5):281–297 CrossRefGoogle Scholar
  30. 30.
    Katayama M, Hasuura H (2003) Optimization principle determines human arm postures and “comfort”. In: SICE 2003 annual conference 1, pp 1000–1005 Google Scholar
  31. 31.
    Klein G, Woods JM, Bradshaw D, Hoffman PJ, Feltovich R (2004) Ten challenges for making automation a “team player” in joint human-agent activity. IEEE Intell Syst 19(6):91–95 CrossRefGoogle Scholar
  32. 32.
    Koay KL, Sisbot EA, Syrdal DA, Walters ML, Dautenhahn K, Alami R (2007) Exploratory study of a robot approaching a person in the context of handling over an object. In: Association for the advancement of artificial intelligence spring symposia, AAAI, Palo Alto, CA, USA Google Scholar
  33. 33.
    Kolsch M, Beall AC, Turk M (2003) The postural comfort zone for reaching gestures. In: Human factors and ergonomics society annual meeting proceedings, vol 47, pp 787–791 Google Scholar
  34. 34.
    Kröger T, Tomiczek A, Wahl F (2006) Towards on-line trajectory computation. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Beijing, China, Citeseer Google Scholar
  35. 35.
    Kulić D, Croft E (2007) Physiological and subjective responses to articulated robot motion. Robotica 25(1):13–27 CrossRefGoogle Scholar
  36. 36.
    Kulic D, Croft E (2007) Pre-collision safety strategies for human-robot interaction. Auton Robot 22(2):149–164 CrossRefGoogle Scholar
  37. 37.
    Liu S (2002) An on-line reference-trajectory generator for smooth motion of impulse-controlled industrial manipulators. In: 7th international workshop on advanced motion control, pp 365–370 Google Scholar
  38. 38.
    Lloyd J, Hayward V (1993) Trajectory generation for sensor-driven and time-varying tasks. Int J Robot Res 12:380–393 CrossRefGoogle Scholar
  39. 39.
    Macfarlane S, Croft E (2003) Jerk-bounded manipulator trajectory planning: Design for real-time applications. IEEE Trans Robot Autom 19:42–52 CrossRefGoogle Scholar
  40. 40.
    Marin L, Sisbot EA, Alami R (2008) Geometric tools for perspective taking for human-robot interaction. In: Mexican international conference on artificial intelligence (MICAI 2008), Mexico City, Mexico Google Scholar
  41. 41.
    Moll H, Tomasello M (2006) Level 1 perspective-taking at 24 months of age. Br J Dev Psychol 24:603–613 CrossRefGoogle Scholar
  42. 42.
    Müller P, Wonka P, Haegler S, Ulmer A, Van Gool L (2006) Procedural modeling of buildings. ACM Trans Graph 25(3):614–623 CrossRefGoogle Scholar
  43. 43.
    Nakamura Y (1990) Advanced robotics: redundancy and optimization. Addison-Wesley Longman, Boston Google Scholar
  44. 44.
    Nokata M, Ikuta K, Ishii H (2002) Safety-optimizing method of human-care robot design and control. In: IEEE international conference on robotics and automation, ICRA, Washington DC, USA, vol 2, pp 1991–1996 Google Scholar
  45. 45.
    Nonaka S, Inoue K, Arai T, Mae Y (2004) Evaluation of human sense of security for coexisting robots using virtual reality. 1st report: evaluation of pick and place motion of humanoid robots. In: IEEE international conference on robotics and automation, ICRA, New Orleans, USA, vol 3, pp 2770–2775 Google Scholar
  46. 46.
    Pacchierotti E, Christensen H, Jensfelt P (2005) Human-robot embodied interaction in hallway settings: a pilot user study. In: IEEE international workshop on robot and human interactive communication, RO-MAN, Nashville, USA, pp 164–171 Google Scholar
  47. 47.
    Pacchierotti E, Christensen H, Jensfelt P (2006) Evaluation of passing distance for social robots. In: IEEE international workshop on robot and human interactive communication, RO-MAN, Hatfield, UK, pp 315–320 Google Scholar
  48. 48.
    Rix J, Stork A (1999) Combining ergonomic and field-of-view analysis using virtual humans. In: SME computer technology solutions conference, Detroit Google Scholar
  49. 49.
    de Sá AG, Rix J (1998) Virtual prototyping - the integration of design and virtual reality. Tech rep, Fraunhofer Institute for Computer Graphics, Darmstadt, Germany Google Scholar
  50. 50.
    Sakata K, Takubo T, Inoue K, Nonaka S, Mae Y, Arai T (2004) Psychological evaluation on shape and motions of real humanoid robot. In: IEEE international workshop on robot and human interactive communication, RO-MAN, Okayama, Japan, pp 29–34 Google Scholar
  51. 51.
    Seki K, Tadakuma S (2004) Minimum jerk control of power asisting robot based on human arm behavior characteristic. In: international conference on systems, man and cybernetics, pp 722–721 Google Scholar
  52. 52.
    Sisbot EA, Marin-Urias LF, Alami R, Simeon T (2007a) Human aware mobile robot motion planner. IEEE Trans Robot 23:874–883 CrossRefGoogle Scholar
  53. 53.
    Sisbot EA, Urias LFM, Alami R, Siméon T (2007b) Spatial reasoning for human-robot interaction. In: IEEE/RSJ international conference on intelligent robots and systems, IROS, San Diego, CA, USA Google Scholar
  54. 54.
    Sisbot EA, Clodic A, Alami R, Ransan M (2008) Supervision and motion planning for a mobile manipulator interacting with humans. In: ACM/IEEE international conference on human-robot interaction, HRI, Amsterdam, The Netherlands Google Scholar
  55. 55.
    Tambe M (1997) Towards flexible teamwork. J Artif Intell Res 7:83–124 Google Scholar
  56. 56.
    Trafton J, Schultz AC, Bugajska M, Mintz F (2005a) Perspective-taking with robots: experiments and models. In: Robot and human interactive communication RO-MAN, pp 580–584 Google Scholar
  57. 57.
    Trafton JG, Cassimatis NL, Bugajska MD, Brock DP, Mintz F, Schultz AC (2005b) Enabling effective human-robot interaction using perspective-taking in robots. IEEE Trans Syst Man, Cybern A:460–470 Google Scholar
  58. 58.
    Walters M, Dautenhahn K, Boekhorst R, Koay KL, Kaouri C, Woods S, Nehaniv C, Lee D, Werry I (2005a) The influence of subjects’ personality traits on personal spatial zones in a human-robot interaction experiment. In: IEEE international workshop on robot and human interactive communication, RO-MAN, Nashville, USA, pp 347–352 Google Scholar
  59. 59.
    Walters M, Dautenhahn K, Koay KL, Kaouri C, Boekhorst R, Nehaniv C, Lee D, Werry I (2005b) Close encounters: spatial distances between people and a robot of mechanistic appearance. In: IEEE-RAS international conference on humanoid robots, humanoids, Tsukuba, Japan, pp 450–455 Google Scholar
  60. 60.
    Yin X, Wonka P, Razdan A (2009) Generating 3d building models from architectural drawings: a survey. IEEE Comput Graph Appl 29(1):20–30 CrossRefGoogle Scholar
  61. 61.
    Yoda M, Shiota Y (1995) Basic study on avoidance motions for human behaviors. In: IEEE international workshop on robot and human interactive communication, RO-MAN, Tokyo, Japan, pp 318–322 Google Scholar
  62. 62.
    Zinn M, Khatib O, Roth B, Salisbury JK (2004) Playing it safe [human-friendly robots]. IEEE Robot Autom Mag 11(2):12–21 CrossRefGoogle Scholar

Copyright information

© Springer Science & Business Media BV 2010

Authors and Affiliations

  • Emrah Akin Sisbot
    • 1
    • 2
  • Luis F. Marin-Urias
    • 1
    • 2
  • Xavier Broquère
    • 1
    • 2
  • Daniel Sidobre
    • 1
    • 2
  • Rachid Alami
    • 1
    • 2
  1. 1.CNRSLAASToulouseFrance
  2. 2.UPS, INSA, INP, ISAE, LAASUniversité de ToulouseToulouseFrance

Personalised recommendations