International Journal of Social Robotics

, Volume 1, Issue 2, pp 127–140 | Cite as

The Autonomous City Explorer: Towards Natural Human-Robot Interaction in Urban Environments

  • Andrea BauerEmail author
  • Klaas Klasing
  • Georgios Lidoris
  • Quirin Mühlbauer
  • Florian Rohrmüller
  • Stefan Sosnowski
  • Tingting Xu
  • Kolja Kühnlenz
  • Dirk Wollherr
  • Martin Buss
Original Paper


The Autonomous City Explorer (ACE) project combines research from autonomous outdoor navigation and human-robot interaction. The ACE robot is capable of navigating unknown urban environments without the use of GPS data or prior map knowledge. It finds its way by interacting with pedestrians in a natural and intuitive way and building a topological representation of its surroundings. In a recent experiment the robot managed to successfully travel a 1.5 km distance from the campus of the Technische Universität München to Marienplatz, the central square of Munich. This article describes the principles and system components for navigation in urban environments, information retrieval through natural human-robot interaction, the construction of a suitable semantic representation as well as results from the field experiment.


Human-robot interaction Knowledge representation Social robotics Field robotics Autonomous outdoor navigation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brooks R (1991) New approaches to robotics. Science 253:1227–1232 CrossRefGoogle Scholar
  2. 2.
    Thrun S (2006) Stanley: The robot that won the DARPA grand challenge: Research articles. J Robotic Syst 23:661–692 Google Scholar
  3. 3.
    Buehler M, Lagnemma K, Singh S (eds) (2008) J Field Robotics. Special issue on the 2007 DARPA Urban Challenge, Part I Google Scholar
  4. 4.
    Morales Y, Takeuchi E, Carballo A, Tokunaga W, Kuniyoshi H, Aburadani A, Hirosawa A, Nagasaka Y, Suzuki Y, Tsubouchi T (eds) (2008) 1 km autonomous robot navigation on outdoor pedestrian paths. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) Google Scholar
  5. 5.
    Burgard W, Cremers AB, Fox D, Hähnel D, Lakemeyer G, Schulz D, Steiner W, Thrun S (1999) Experiences with an interactive museum tour-guide robot. Artif Intell 114:3–55 zbMATHCrossRefGoogle Scholar
  6. 6.
    Thrun S, Beetz M, Bennewitz M, Burgard W, Cremers A, Dellaert F, Fox D, Haehnel D, Rosenberg C, Roy N, Schulte J, Schulz D (2000) Probabilistic algorithms and the interactive museum tour-guide robot Minerva. Int J Robotics Res 19:972–999 CrossRefGoogle Scholar
  7. 7.
    Gross H-M, Böhme H-J, Schröter C, Müller S, König A, Martin C, Merten M, Bley A (2008) Shopbot: Progress in developing an interactive mobile shopping assistant for everyday use. In: Proceedings of the IEEE international conference on systems, man and cybernetics (IEEE-SMC) Google Scholar
  8. 8.
    Fong TW, Nourbakhsh I, Ambrose R, Simmons R, Schultz A, Scholtz J (2005) The peer-to-peer human-robot interaction project. In: AIAA Space 2005 Google Scholar
  9. 9.
    Michalowski MP, Sabanovic S, DiSalvo CF, Font DB, Hiatt LM, Melchior N, Simmons R (2007) Socially distributed perception: GRACE plays social tag at AAAI 2005. Auton Robots 22:385–397 CrossRefGoogle Scholar
  10. 10.
    Lauria S, Bugmann G, Kyriacou T, Klein E (2001) Instruction based learning: how to instruct a personal robot to find hal. In: Proceedings of the 9th European workshop on learning robots Google Scholar
  11. 11.
    Hüttenrauch H, Eklundh K, Green EA (2006) Investigating spatial relationships in human-robot interaction. In: Proceedings of the international conference on intelligent robots and systems Google Scholar
  12. 12.
    Topp EA, Christensen HI (2008) Detecting structural ambiguities and transitions during a guided tour. In: Proceedings of the international conference on robotics and automation Google Scholar
  13. 13.
    Lidoris G, Klasing K, Bauer A, Xu T, Kühnlenz K, Wollherr D, Buss M (2007) The autonomous city explorer project: Aims and system overview. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) Google Scholar
  14. 14.
    Klasing K, Lidoris G, Bauer A, Rohrmüller F, Wollherr D, Buss M (2008) The autonomous city explorer: Towards semantic navigation in urban environments. In: Proceedings of the 1st international workshop on cognition for technical systems (CoTeSys) Google Scholar
  15. 15.
    Kühnlenz K, Bachmayer M, Buss M (2006) A multi-focal high-performance vision system. In: 2006 IEEE international conference on robotics and automation (ICRA) Google Scholar
  16. 16.
    Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, Cambridge zbMATHGoogle Scholar
  17. 17.
    Doucet A, de Freitas JFG, Gordon NJ (2000) Sequential Monte Carlo methods in practice. Springer, New York Google Scholar
  18. 18.
    Lidoris G, Wollherr D, Buss M (2008) Bayesian state estimation and behavior selection for autonomous robotic exploration in dynamic environments. In: 2008 IEEE/RSJ international conference on intelligent robots and systems (IROS) Google Scholar
  19. 19.
    Beeson P, Jong NK, Kuipers B (2005) Towards autonomous topological place detection using the extended Voronoi graph. In: International Conference of robotics and automation (ICRA), Barcelona, Spain Google Scholar
  20. 20.
    Yamauchi B (1998) Frontier-based exploration using multiple robots. In: Second international conference on autonomous agents Google Scholar
  21. 21.
    Stachniss C, Grisetti G, Burgard W (2005) Information gain-based exploration using Rao-Blackwellized particle filters. In: Robotics: science and systems (RSS) Google Scholar
  22. 22.
    Philippsen R, Siegwart R (2003) Smooth and efficient obstacle avoidance for a tour guide robot. In: IEEE international conference of robotics and automation (ICRA) Google Scholar
  23. 23.
    Mühlbauer Q, Kühnlenz K, Buss M (2008) A model-based algorithm to estimate body poses using stereo vision. In: Proceedings of the 17th international symposium on robot and human interactive communication Google Scholar
  24. 24.
    Lienhart R, Maydt J (2002) Extended set of Haar-like features for rapid object detection. In: Proceedings of the international conference on image processing Google Scholar
  25. 25.
    Wunderlich D (1978) Wie analysiert man Gespräche? Beispiel: Wegauskünfte. Linguist Ber 58:41–76 Google Scholar
  26. 26.
    Bühler K (1934/1990) Theory of language. The representational function of language. Benjamins, Amsterdam Google Scholar
  27. 27.
    Schröder M, Trouvain J (2003) The German text-to-speech synthesis system MARY: A tool for research, development and teaching. Int J Speech Technol 6:365–377 CrossRefGoogle Scholar
  28. 28.
    Weiss A, Bernhaupt R, Tscheligi M, Wollherr D, Kühnlenz K, Buss M (2008) A methodological variation for acceptance evaluation of human-robot interaction in public places. In: International symposium on robot and human interactive communication Google Scholar

Copyright information

© Springer Science & Business Media BV 2009

Authors and Affiliations

  • Andrea Bauer
    • 1
    Email author
  • Klaas Klasing
    • 1
  • Georgios Lidoris
    • 1
  • Quirin Mühlbauer
    • 1
  • Florian Rohrmüller
    • 1
  • Stefan Sosnowski
    • 1
  • Tingting Xu
    • 1
  • Kolja Kühnlenz
    • 1
  • Dirk Wollherr
    • 1
  • Martin Buss
    • 1
  1. 1.Institute of Automatic Control Engineering (LSR)Technische Universität MünchenMunichGermany

Personalised recommendations