Toward Acceptable Domestic Robots: Applying Insights from Social Psychology

  • James E. Young
  • Richard Hawkins
  • Ehud Sharlin
  • Takeo Igarashi
Original Paper

Abstract

Social psychology offers a perspective on the acceptance and adoption of technology that is not often considered in technical circles. In this paper, we discuss several adoption-of-technology models with respect to the acceptance of domestic robots: we examine social-psychology literature and apply it directly to human-robot interaction. We raise key points that we feel will be pivotal to how domestic users respond to robots, and provide a set of guidelines that roboticists and designers of robotic interfaces can use to consider and analyze their designs. Ultimately, understanding how users respond to robots and the reasons behind their responses will enable designers to creating domestic robots that are accepted into homes.

Keywords

Models and principles User/machine systems Software psychology 

References

  1. 1.
    Ajzen I (1991) The theory of planned behavior. Organ Behav Hum Decis Process 50:179–211 CrossRefGoogle Scholar
  2. 2.
    Ajzen I, Fishbein M (1980) Understanding attitudes and predicting social behavior. Prentice-Hall, Englewood Cliffs Google Scholar
  3. 3.
    Asimov I (1968) Robot. Grafton Books, London Google Scholar
  4. 4.
    Bartneck C, van der Hoek M, Mubin O et al. (2007) Daisy, “Daisy, give me your answer do!”: switching off a robot. In: Proc ACM SIGCHI/SIGART conf hum-robot interact, 2007, HRI ’07, Washington, DC, USA, Mar 10–12, 2007. ACM Press, New York, pp 217–222 CrossRefGoogle Scholar
  5. 5.
    Bartneck C, Verbunt M, Mubin O et al. (2007) To kill a mockingbird robot. In: Proc ACM SIGCHI/SIGART conf hum-robot interact, 2007, HRI ’07, Washington, DC, USA, Mar 10–12, 2007. ACM Press, New York, pp 81–87 CrossRefGoogle Scholar
  6. 6.
    Bijker W (1993) Do not despair: there is life after constructivism. Sci Technol Hum Values 18(4):113–138 CrossRefGoogle Scholar
  7. 7.
    Breazeal C (2001) Affective interaction between humans and robots. In: Proc Eur conf adv artif life, 2001. ECAL ’01, Prague, Czech Republic, Sep 10–14 2001. Springer, London, pp 582–291 CrossRefGoogle Scholar
  8. 8.
    Breazeal CL (2002) Designing sociable robots. MIT Press, Cambridge Google Scholar
  9. 9.
    Breazeal CL (2003) Emotion and sociable humanoid robots. Int J Hum-Comput Stud 59(1–2):119–155 CrossRefGoogle Scholar
  10. 10.
    Brenton H, Gilles M, Ballin D et al (2005) The uncanny valley: does it exist? In: Proc HCI annu conf: workshop on human-animated character interaction, Edinburgh, 2005 Google Scholar
  11. 11.
    Burnkrant R, Cousineau A (1975) Informational and normative social influence in buyer behavior. J Consum Res 206–215 Google Scholar
  12. 12.
    Callon M (1987) Society in the making: the study of technology as a tool for sociological analysis. In: Bikjer WE, Hughes TP, Pinch T (eds) The social construction of technological systems. MIT Press, Cambridge Google Scholar
  13. 13.
    Capek K (1970) Rossum’s universal robots. Pocket Books, New York. Originally appeared as play, 1920 Google Scholar
  14. 14.
    Clark J, McLoughlin I, Rose H et al. (1988) The process of technological change: new technology and social choice in the workplace. Cambridge University Press, Cambridge Google Scholar
  15. 15.
    Cohen WM, Levinthal DA (1990) Absorptive capacity: a new perspective on learning and innovation. Adm Sci Q 128–152 Google Scholar
  16. 16.
    Compeau D, Higgins CA (1995) Applications of social cognitive theory to training for computer skills. Inf Syst Res 6(2):118–143 CrossRefGoogle Scholar
  17. 17.
    Cornwall J (1977) Modern capitalism: its growth and transformation. Martin Robertson, London Google Scholar
  18. 18.
    Davis FD (1986) A technology acceptance model for empirically testing new end-user information systems: theory and results. PhD thesis, Sloan School of Management, MIT Google Scholar
  19. 19.
    Dholakia RR (2006) Gender and it in the household: evolving patterns of Internet use in the United States. Inf Soc 22(4):231–240 CrossRefGoogle Scholar
  20. 20.
    Dosi G (1982) Technological paradigms and technological trajectories: a suggested interpretation of the determinants and directions of technical change. Res Policy 11(3):147–162 CrossRefGoogle Scholar
  21. 21.
    Fleck J (1984) The adoption of robots in industry. Phys Technol 15(1):4–11 CrossRefGoogle Scholar
  22. 22.
    Forlizzi J, DiSalvo C (2006) Service robots in the domestic environment: a study of the roomba vacuum in the home. In: Proc ACM SIGCHI/SIGART conf hum-robot interact, 2006, HRI ’06, Salt Lake City, USA, Mar 2–4, 2006. ACM Press, New York, pp 258–256 CrossRefGoogle Scholar
  23. 23.
    Friedman B, Peter H, Kahn J, Hagman J (2003) Hardware companions?—what online AIBO discussion forums reveal about the human-robotic relationship. In: ACM conf hum factors comput syst, 2003, CHI ’03, Fort Lauderdale, USA, Apr 5–10, 2003. ACM Press, New York, pp 273–280 CrossRefGoogle Scholar
  24. 24.
    Fussell SR, Kiesler S, Setlock LD et al. (2008) How people anthropomorphize robots. In: Proc ACM SIGCHI/SIGART conf hum-robot interact, 2008, HRI ’08, Amsterdam, The Netherlands, Mar 12–15, 2008. ACM Press, New York, pp 145–152 Google Scholar
  25. 25.
    Garreau J (2007). Bots on the ground. In: Washington Post, available via WWW, http://www.washingtonpost.com/wp-dyn/content/article/2007/05/05/AR2007050501009_pf.html, Visited April 9th, 2008
  26. 26.
    Geller T (2008) Overcoming the uncanny valley. IEEE Comput Graph Appl 28:11–17 CrossRefGoogle Scholar
  27. 27.
    Hamill L (2006) Controlling smart devices in the home. Inf Soc 22(4):241–249 CrossRefGoogle Scholar
  28. 28.
    Hamill L, Harper R (2006) Talking intelligence: a historical and conceptual exploration of speech-based human-machine interaction in smart homes. In: Proc int symp intell environ, 2006, ISIE ’06, Cambridge, UK, Apr 5–7, 2006. MSR Press, Cambridge, pp 121–128 Google Scholar
  29. 29.
    Hanson D, Olney A, Pereira IA et al. (2005) Upending the uncanny valley. In: Proc natl conf artif intell, 2005, AAAI ’05, Pittsburgh, USA, Jul 9–13, 2005. AAAI Press, Menlo Park, pp 1728–1729 Google Scholar
  30. 30.
    Kiesler S, Hinds P (2004) Introduction to this special issue on human-robot interaction. Hum-Comput Interact 19(1/2):1–8 CrossRefGoogle Scholar
  31. 31.
    Kirsh D (2006) Explaining artifact evolution. In: Presentation at the knowledge conference, Irvine, April 22, 2006. University of California Press, Irvine Google Scholar
  32. 32.
    Lancaster K (1966) A new approach to consumer theory. J Political Econ 74(2):132–157 CrossRefMathSciNetGoogle Scholar
  33. 33.
    Levy D (2007) Love and sex with robots: the evolution of human-robot relationships. Harper, New York Google Scholar
  34. 34.
    MacDorman KF, Minato T, Shimada M et al. (2005) Assessing human likeness by eye contact in an android testbed. In: Proc annu meet cogn sci soc, 2005, CogSci ’05, Stresa, Italy, Jul 21–23, 2005. Lawrence Erlbaum, Mahwah Google Scholar
  35. 35.
    Mansfield E (1989) The diffusion of industrial robots in Japan and the United States. Res Policy 18:183–192 CrossRefGoogle Scholar
  36. 36.
    Mathieson K (1991) Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Inf Syst Res 2(3):173–191 CrossRefGoogle Scholar
  37. 37.
    McMeekin A, Green K, Tomlinson M et al. (2002) Innovation by demand: an interdisciplinary approach to the study of demand and its role in innovation. Edward Elgar, Cheltenham Google Scholar
  38. 38.
    Michalowski MP, Sabanovic S, Kozima H (2007) A dancing robot for rhythmic social interaction. In: Proc ACM SIGCHI/SIGART conf hum-robot interact, 2007, HRI ’07, Washington, DC, USA, Mar 10–12, 2007. ACM Press, New York, pp 89–96 CrossRefGoogle Scholar
  39. 39.
    Minato T, Shimada M, Ishiguro H et al. (2004) Development of an android for studying human-robot interaction. In: Proc innov appl artif intell, int conf ind eng appl artif intell expert syst 2004, IEA/AIE ’04, Ottawa, Canada, May 17–20, 2004. ACM Press, New York, pp 424–434 Google Scholar
  40. 40.
    Minato T, Yoshikawa Y, Noda T et al. (2007) Cb2: a child robot with biomimetic body for cognitive developmental robotics. In: Proc IEEE-RAS/RSJ int conf hum robot, 2007, Humanoids ’07, Pittsburgh, USA, Nov 29–Dec 1, 2007. IEEE Press, Los Alamitos Google Scholar
  41. 41.
    Montalvo C (2002) Environmental policy and technological innovation: why do firms adopt or reject new technologies? Edward Elgar, Cheltenham Google Scholar
  42. 42.
    Mori M (1970) Bukimi no tani: the uncanny valley. Energy 7(4):33–35 (in Japanese). English translation provided at CogSci ’05 workshop: toward social mechanisms of android science, views of the Uncanny Valley. WWW, http://www.androidscience.com/theuncannyvalley/proceedings2005/uncannyvalley.html. Visited Feb 9th, 2007 Google Scholar
  43. 43.
    Norman D (2004) Emotional design: why we love (or hate) everyday things. Basic Books, New York Google Scholar
  44. 44.
    Pavlov IP (1927) Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Oxford University Press, London. Translated and edited by GV Anrep Google Scholar
  45. 45.
    Pinch TJ, Bijker WE (1987) The social construction of technological systems. In: The social construction of facts and artifacts. MIT Press, Cambridge, pp 17–50 Google Scholar
  46. 46.
    Rogers EM (1995) Diffusion of innovations. Free Press, New York Google Scholar
  47. 47.
    Schmookler J (1966) Invention and economic growth. Harvard University Press, Cambridge Google Scholar
  48. 48.
    Schumpeter JA (1912) Die Theorie der Wirtschaftlichen Entwicklung. Duncker & Humblot, Leipzig Google Scholar
  49. 49.
    Scitovsky T (1976) The joyless economy: an inquiry into human satisfaction and consumer dissatisfaction. Oxford University Press, Oxford Google Scholar
  50. 50.
    Setterfield M (2002) The economics of demand-lef growth: challenging the supply-side vision of the long run. Edward Elgar, Cheltenham Google Scholar
  51. 51.
    Silverstone R (1991) Beneath the bottom line: households and information and communication technologies in an age of the consumer. PICT Policy Res Pap 17. Economic and Social Research Council, Swindon Google Scholar
  52. 52.
    Silverstone R, Morley D (1990) Families and their technologies: two ethnographic portraits. In: Household choices. Futures Publications, London, pp 74–83 Google Scholar
  53. 53.
    Steiner CJ (1995) A philosophy for innovation: the role of unconventional individuals in innovation success. J Prod Innov Manag 12:431–440 CrossRefGoogle Scholar
  54. 54.
    Stoneman P (1976) Technological diffusion and the computer revolution: the UK experience. Cambridge University Press, Cambridge Google Scholar
  55. 55.
    Swann GMP (2001) The demand for distinction and the evolution of the prestige car. J Evol Econ 11:59–75 CrossRefGoogle Scholar
  56. 56.
    Venkatesh A (2006) Introduction to the special issue on “ICT in everyday life: home and personal environments”. Inf Soc 22(4):191–194 CrossRefGoogle Scholar
  57. 57.
    Venkatesh A, Brown SA (2001) A longitudinal investigation of personal computers in homes: adoption determinants and emerging challenges. MIS Q 25(1):71–102 CrossRefGoogle Scholar
  58. 58.
    Venkatesh V, Davis FD (2000) A theoretical extension of the technology acceptance model: four longitudinal field studies. Manag Sci 46(2):186–204 CrossRefGoogle Scholar
  59. 59.
    Von Hippel E (2005) Democratizing innovation. MIT Press, Cambridge Google Scholar
  60. 60.
    Walters ML, Syrdal DS, Dautenhahn K et al. (2008) Avoiding the uncanny valley: robot appearance, personality and consistency of behavior in an attention-seeking home scenario for a robot companion. Auton Robot 24(2):159–178 CrossRefGoogle Scholar
  61. 61.
    Williams R, Edge D (1996) The social shaping of technology. Res Policy 25(6):865–899 CrossRefGoogle Scholar
  62. 62.
    Winner L (1987) Do artifacts have politics?. In: The whale and the reactor: a search for limits in an age of high technology. University of Chicago Press, Chicago, pp 19–39 Google Scholar
  63. 63.
    Young JE, Xin M, Sharlin E (2007) Robot expressionism through cartooning. In: Proc ACM SIGCHI/SIGART conf hum-robot interact, 2007, HRI ’07, Washington, DC, USA, Mar 10–12, 2007. ACM Press, New York, pp 309–316 CrossRefGoogle Scholar
  64. 64.
    Zoonen L v (2002) Gendering the internet, claims, controversies and cultures. Eur J Commun 17(1):5–24 CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • James E. Young
    • 1
    • 2
  • Richard Hawkins
    • 1
  • Ehud Sharlin
    • 1
  • Takeo Igarashi
    • 2
    • 3
  1. 1.University of CalgaryCalgaryCanada
  2. 2.JST ERATOTokyoJapan
  3. 3.The University of TokyoTokyoJapan

Personalised recommendations