Advertisement

SSR-Based Genetic Identity of Sugarcane Clones and its Potential Application in Breeding and Variety Extension

  • 17 Accesses

Abstract

Sugarcane variety regional test and integrated demonstration play an important role in identifying new varieties of high yield, disease resistance and wide adaptability. In this study, 15 SSR primer pairs were used to assess the genetic diversity among 68 sugarcane clones involved in three cycles of national regional tests and four cycles of integrated demonstrations in China. In total, 141 DNA fragments of 100 to 350 bp in length were identified, of which 139 fragments (98.58%) were polymorphic. Clustering analysis of UPGMA algorithm based on the Nei genetic similarity coefficient divided the 68 sugarcane clones into five groups. Group I only had one clone YT00-318 due to its high heterogeneity. Groups II, III, VI and V contained 4, 6, 5 and 52 sugarcane clones, respectively. A small subgroup A in group V was identified at the genetic similarity coefficient 0.890 that contained ROC22, FN07-3206, FN40, GT09-12 and LC07-150. ROC22 was a check variety with wide adaptability, high cane yield, high sugar and several other excellent characteristics; the other four clones might have a high potential of release by sharing the same excellent traits. Principal component analysis showed that the 68 sugarcane clones within quadrants I, II, III and IV showed a high homogeneity, and no series of clones obviously gathered together. The SSR fingerprint information of the 68 sugarcane clones has been drawn into a SSR fingerprint map for the identification of sugarcane clones in Chinese sugarcane breeding programs.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Amar, M.H., M.K. Biswas, Z. Zhang, and W.W. Guo. 2011. Exploitation of SSR, SRAP and CAPS-SNP markers for genetic diversity of citrus germplasm collection. Scientia Horticulturae 128(3): 220–227. https://doi.org/10.1016/j.scienta.2011.01.021.

  2. Andru, S., Y.B. Pan, S. Thongthawee, D.M. Burner, and C.A. Kimbeng. 2011. Genetic analysis of the sugarcane (saccharum spp.) cultivar ‘LCP 85-384’. I. linkage mapping using AFLP, SSR, and TRAP markers. Theoretical and Applied Genetics 123(1): 77–93. https://doi.org/10.1007/s00122-011-1568-x.

  3. Andrade, J.C.F.D., J. Terto, J.V. Silva, and C. Almeida. 2015. Expression profiles of sugarcane under drought conditions: variation in gene regulation. Genetics and Molecular Biology 38(4): 465–469. https://doi.org/10.1590/S1415-475738420140288.

  4. Arkova, O.V., M.P. Ponomarenko, D.A. Rasskazov, I.A. Drachkova, T.V. Arshinova, and P.M. Ponomarenko. 2015. Obesity-related known and candidate SNP markers can significantly change affinity of tata-binding protein for human gene promoters. BMC Genomics 16(13 Supplement): S5. https://doi.org/10.1186/1471-2164-16-S13-S5.

  5. Baert-Desurmont, S., F. Charbonnier, E. Houivet, L. Ippolito, J. Mauillon, and M. Bougeard. 2016. Clinical relevance of 8q23, 15q13 and 18q21 SNP genotyping to evaluate colorectal cancer risk. European Journal of Human Genetics 24: 99–105. https://doi.org/10.1038/ejhg.2015.72.

  6. Benin, G., G. Matei, D.O.A. Costa, G.O. Silva, T.R. Hagemann, and D.S.C. Lemes. 2012. Relationships between four measures of genetic distance and breeding behavior in spring wheat. Genetics and Molecular Research 11(3): 2390–2400. https://doi.org/10.4238/2012.June.15.3.

  7. Chandra, A., M.P. Grisham, and Y.B. Pan. 2014. Allelic divergence and cultivar-specific SSR alleles revealed by capillary electrophoresis using fluorescence-labeled SSR markers in sugarcane. Genome 57(6): 363–372. https://doi.org/10.1139/gen-2014-0072.

  8. Chen, T.M., P.L. Kuo, C.H. Hsu, S.J. Tsai, M.J. Chen, C.W. Lin, and H.S. Sun. 2007. Microsatellite in the 3’ untranslated region of human fibroblast growth factor 9 (FGF9) gene exhibits pleiotropic effect on modulating FGF9 protein expression. Human Mutation 28(1): 98. https://doi.org/10.1002/humu.9471.

  9. Chen, R.K., L.P. Xu, and Y.Q. Lin. 2011. Modern sugarcane genetic breeding. Beijing: China Agriculture Press.

  10. Cuming, A.C. 2016. Gene tagging in physcomitrella patens: An addition to the genetic toolbox. New Phytologist 21: 543–545. https://doi.org/10.1111/nph.14201.

  11. Deren, C.W. 1995. Genetic base of U.S. mainland sugarcane. Crop Science 35(4): 1195–1199. https://doi.org/10.2135/cropsci1995.0011183X003500040047x.

  12. Dreisigacker, S., P. Zhang, M.L. Warburton, M. Van Ginkel, D. Hoisington, and M. Bohn. 2004. SSR and pedigree analyses of genetic diversity among cimmyt wheat lines targeted to different megaenvironments. Crop Science 44(2): 381–388. https://doi.org/10.2135/cropsci2004.3810.

  13. Dubey, L., B.M. Prasanna, and B. Ramesh. 2009. Analysis of drought tolerant and susceptible maize genotypes using SSR markers tagging candidate genes and consensus QTLs for drought tolerance. Indian Society of Genetics and Plant Breeding 69(4): 344–351. https://doi.org/10.1002/humu.21099.

  14. Edmé, S.J., J.D. Miller, B. Glaz, P.Y.P. Tai, and J.C. Comstock. 2005. Genetic contribution to yield gains in the Florida sugarcane industry across 33 years. Crop Science 45(1): 92–97. https://doi.org/10.2135/cropsci2005.0092.

  15. Edwards, A., A. Civitello, H.A. Hammond, and C.T. Caskey. 1991. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. American Journal of Human Genetics 49: 746–756. https://doi.org/10.1016/0378-1119(92)90168-O.

  16. Erskine, W., and F.J. Muehlbauer. 1991. Allozyme and morphological variability, outcrossing rate and core collection formation in lentil germplasm. Theoretical and Applied Genetics 83(1): 119–125. https://doi.org/10.1007/bf00229234.

  17. Ganie, S.H., P. Upadhyay, S. Das, and M.P. Sharma. 2015. Authentication of medicinal plants by DNA markers. Plant Gene 4: 83–99. https://doi.org/10.1016/j.plgene.2015.10.002.

  18. Gao, P., H. Ma, F. Luan, and H. Song. 2012. DNA fingerprinting of Chinese melon provides evidentiary support of seed quality appraisal. PLoS ONE 7(12): e52431. https://doi.org/10.1371/journal.pone.0052431.

  19. Gardner, S.N., J.B. Thissen, K.S. Mcloughlin, T. Slezak, and C.J. Jaing. 2013. Optimizing SNP microarray probe design for high accuracy microbial genotyping. Journal of Microbiological Methods 94(3): 303–310. https://doi.org/10.1016/j.mimet.2013.07.006.

  20. Gymrek, M., T. Willems, A. Guilmatre, H. Zeng, B. Markus, S. Georgiev, M.J. Daly, A.L. Price, J.K. Pritchard, A.J. Sharp, and Y. Erlich. 2016. Abundant contribution of short tandem repeats to gene expression variation in humans. Nature Genetics 48: 22–29. https://doi.org/10.1038/ng.3461.

  21. Huang, M., F.M. Xie, L.Y. Chen, X.Q. Zhao, L. Jojee, and D. Madonna. 2010. Comparative analysis of genetic diversity and structure in rice using ILP and SSR markers. Rice Science 2010(4): 14–25.

  22. Ismail, N.A., M.Y. Rafii, T.M.M. Mahmud, M.M. Hanafi, and G. Miah. 2019. Genetic diversity of torch ginger (Etlingera elatior) germplasm revealed by ISSR and SSR markers. BioMed Research International 2019: 1–14. https://doi.org/10.1155/2019/5904804.

  23. Kumar, M. 2016. Impact of climate change on crop yield and role of model for achieving food security. Environmental Monitoring and Assessment 188(8): 1–14. https://doi.org/10.1007/s10661-016-5472-3.

  24. Li, H., S.Y. Ca, J. Niu, P. Yuan, D. Zhao, and F. Zhang. 2015. The types and application of molecular markers in the study of pomegranate germplasm resources. Acta Horticulturae 1089: 127–132. https://doi.org/10.17660/ActaHortic.2015.1089.14.

  25. Lima, M.L.A., A.A.F. Garcia, K.M. Oliveira, S. Matsuoka, H. Arizono, C.L. de Souza Jr, and A.P. de Souza. 2002. Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (saccharum spp.). Theoretical and Applied Genetics 104(1): 30–38. https://doi.org/10.1007/s001220200003.

  26. Liu, S., U. Feuerstein, W. Luesink, S. Schulze, T. Asp, B. Studer, H.C. Becker, and K.J. Dehmer. 2018. DArT, SNP, and SSR analyses of genetic diversity in Lolium perenne L using bulk sampling. BMC Genetics 19(1): 10. https://doi.org/10.1186/s12863-017-0589-0.

  27. Longin, F.H., W.X. Liu, N. Ranc, and J.C. Reif. 2011. Association of progeny variance and genetic distances among parents and implications for the design of elite maize breeding programs. Maydica 56(3): 227–231. https://doi.org/10.1007/s10343-010-0235-5.

  28. Luo, J., Y.B. Pan, L.P. Xu, M.P. Grisham, H. Zhang, and Y.X. Que. 2015. Rational regional distribution of sugarcane cultivars in china. Scientific Reports 5(1): 15721. https://doi.org/10.1038/srep15721.

  29. Luo, J., Y.B. Pan, L.P. Xu, H. Zhang, Z.N. Yuan, Z.H. Deng, R.K. Chen, and Y.X. Que. 2014. Cultivar evaluation and essential test locations identification for sugarcane breeding in China. Scientific World Journal 2014: 302753. https://doi.org/10.1155/2014/302753.

  30. Martin, P., K. Makepeace, S.A. Hill, D.W. Hood, and E.R. Moxon. 2005. Microsatellite instability regulates transcription factor binding and gene expression. Proceedings of the National Academy of Sciences of the United States of America 102(10): 3800–3804. https://doi.org/10.1073/pnas.0406805102.

  31. Matsumoto, K. 2015. Energy structure and energy security under climate mitigation scenarios in China. PLoS ONE 10(12): e0144884. https://doi.org/10.1007/978-1-4471-5286-6_4.

  32. Menhas, R., S. Umer, and G. Shabbir. 2016. Climate change and its impact on food and nutrition security in Pakistan. Iranian Journal of Public Health 45(4): 549–550.

  33. Nayak, S., P.K. Naik, L. Acharya, A.K. Mukherjee, P.C. Panda, and P. Das. 2005. Assessment of genetic diversity among 16 promising cultivars of ginger using cytological and molecular markers. Zeitschrift fur Naturforschung C-A Journal of Biosciences 60(5–6): 485–492. https://doi.org/10.1515/znc-2005-5-618.

  34. Pan, Y.B., J.D. Miller, R.J. Schnell, E.P. Richard, Jr., and Q. Wei. 2003. Application of microsatellite and RAPD fingerprints in the Florida sugarcane variety program. International Sugar Journal 19–28.

  35. Pan, Y.B. 2006. Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Tech 8(4): 246–256. https://doi.org/10.1007/bf02943564.

  36. Pan, Y.B. 2010. Databasing molecular identities of sugarcane (saccharum spp.) clones constructed with microsatellite (SSR) DNA markers. American Journal of Plant Sciences 1(2): 87–94. https://doi.org/10.4236/ajps.2010.12011.

  37. Payne, W.J. 2013. Genetic and physical characterisation of the locus controlling columnar habit in apple (Malus × domestica Borkh.). Molecular Breeding 31(2): 429–440. https://doi.org/10.1007/s11032-012-9800-1.

  38. Perera, M.F., M.E. Arias, D. Costilla, A.C. Luque, M.B. García, C. Dı´az Romero, J. Racedo, S. Ostengo, M.P. Filippone, M.I. Cuenya, and A.P. Castagnaro. 2012. Genetic diversity assessment and genotype identification in sugarcane based on DNA markers and morphological traits. Euphytica 185(3): 491–510. https://doi.org/10.1007/s10681-012-0661-9.

  39. Praveen, K., M. Hemanth Kumar, A. Umamaheshwari, D.M. Reddy, P. Sudhakar, M. Munikumar, D. Pradhan, and N. Sabita. 2015. SGDB: A sugarcane germplasm database. Sugar Tech 17(2): 150–155. https://doi.org/10.1007/s12355-014-0307-4.

  40. Que, Y.X., Y.B. Pan, Y.H. Lu, C. Yang, Y.T. Yang, N. Huang, and L.P. Xu. 2014. Genetic analysis of diversity within a chinese local sugarcane germplasm based on start codon targeted polymorphism. BioMed Research International 2014(5): 7. https://doi.org/10.1155/2014/468375.

  41. Ran, L., W.L. Wu, Z. Yang, and Y.H. Li. 2010. SSR marker and its application to crop genetics and breeding. Genomics and Applied Biology 29: 137–143. https://doi.org/10.3724/SP.J.1238.2010.00569.

  42. Rockman, M.V. and G.A. Wray. 2002. Abundant raw material for cis-regulatory evolution in humans. Molecular Biology and Evolution 19(11): 1991–2004. https://doi.org/10.1093/oxfordjournals.molbev.a004023.

  43. Romero-Severson, J., J.S.C. Smith, J. Ziegle, J. Hauser, L. Joe, and G. Hookstra. 2001. Pedigree analysis and haplotype sharing within diverse groups of zea mays L. inbreds. Theoretical and Applied Genetics 103(4): 567–574. https://doi.org/10.1007/pl00002911.

  44. Tan, L.Q., L.Y. Wang, K. Wei, C.C. Zhang, L.Y. Wu, G.N. Qi, H. Cheng, Q. Zhang, Q.M. Cui, and J.B. Liang. 2013. Floral transcriptome sequencing for SSR marker development and linkage map construction in the tea plant (Camellia sinensis). PLoS ONE 8(11): e81611. https://doi.org/10.1371/journal.pone.0081611.

  45. Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research 17(16): 6463–6471. https://doi.org/10.1093/nar/17.16.6463.

  46. Tian, Y., and C. Wang. 2007. Genetic diversity analysis of Brassica oleracea L. by SSR. Journal of Northeast Agricultural University (English Edition) 14(3): 202–205.

  47. Wang, Z.T., W.H. Su, Y.X. Que, L.P. Xu, H. Zhang, and J. Luo. 2016. Analysis of yield stability and test site representativeness of sugarcane trials using combined AMMI and HA-GGE biplot models. Chinese Journal of Eco-Agriculture 24(6): 790–800. https://doi.org/10.13930/j.cnki.cjea.151284.

  48. Wang, Z.T., Q. You, S.W. Gao, C.F. Wang, Z. Li, J.J. Ma, Y.X. Que, L.P. Xu, and J. Luo. 2018. Identification of sugarcane varieties by AFLP and SSR markers and its application. Acta Agronomica Sinica 44(5): 723–736. https://doi.org/10.3724/SP.J.1006.2018.00723.

  49. Wegary, D., B. Vivek, and M. Labuschagne. 2013. Association of parental genetic distance with heterosis and specific combining ability in quality protein maize. Euphytica 191(2): 205–216. https://doi.org/10.1007/s10681-012-0757-2.

  50. Yao, J., H. Li, J. Ye, and L. Shi. 2016. Relationship between parental genetic distance and offspring’s heterosis for early growth traits in liriodendron: Implication for parent pair selection in cross breeding. New Forests 47(1): 163–177. https://doi.org/10.1007/s11056-015-9508-2.

  51. Yao, W., A.L. Yu, J.S. Xu, H. Zhou, M.Q. Zhang, and R.K. Chen. 2005. A simple and quick method for extracting sugarcane genomic DNA. Journal of Agricultural Biotechnology 13(1): 121–122.

  52. You, Q., Y.B. Pan, L.P. Xu, S.W. Gao, Q.N. Wang, Y.C. Su, Y.Q. Yang, Q.B. Wu, D.G. Zhou, and Y.X. Que. 2016. Genetic diversity analysis of sugarcane germplasm based on fluorescence-labeled simple sequence repeat markers and a capillary electrophoresis-based genotyping platform. Sugar Tech 18(4): 380–390. https://doi.org/10.1007/s12355-015-0395-9.

  53. Zhang, X., J. Yang, and R. Yang. 2006. Study of the relationship between genetic distance and heterosis in castor. Scientia Agricultura Sinica 39(3): 633–640.

Download references

Author information

Correspondence to Jun Luo or Youxiong Que.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Pan, Y., Luo, J. et al. SSR-Based Genetic Identity of Sugarcane Clones and its Potential Application in Breeding and Variety Extension. Sugar Tech (2020) doi:10.1007/s12355-019-00788-9

Download citation

Keywords

  • Sugarcane
  • Regional test
  • Integrated demonstration
  • SSR marker
  • Genetic distance
  • Variety extension
  • Breeding