Advertisement

Sugar Tech

pp 1–17 | Cite as

Comparative Analysis of Drought-Responsive Transcriptome in Different Genotype Saccharum spontaneum L.

  • Tian-Ju Wang
  • Xian-Hong WangEmail author
  • Qing-Hui YangEmail author
Research Article
  • 10 Downloads

Abstract

Saccharum spontaneum L. is one of the most drought-resistant plants among sugarcane breeding materials. To elucidate the internal molecular mechanisms that occur under drought stress conditions in drought-resistant clone 13-13 and drought-sensitive clone 84-261 of S. spontaneum, functional genes closely associated with drought resistance were identified to improve the study and utilization of stress resistance genes in S. spontaneum. High-throughput transcriptome sequencing analyses were performed on the 13-13 and 84-261 clones of this species as well as on control leaves of these materials after 7 days of drought stress. The genes in these two samples that displayed very significant differential expression mainly participated in metabolic activities associated with abiotic stress or adversity, including plant hormone signal transduction, glycolysis/gluconeogenesis, starch and sucrose metabolism, photosynthesis, and oxidative phosphorylation. This study identified some key DEGs for drought resistance, such as DEGs involved in the osmotic regulator, ROS removal system, toxin-degrading enzymes, secondary metabolism, signaling, transcription factors, and biotic and abiotic stresses. We speculated that these genes may have played an important role to resist drought in S. spontaneum. This study identified changes in gene expression and obtained functional information on DEGs in two drought-stressed samples and control. The results showed that the 13-13 had more DEGs than the 84-261. In addition, 13-13 had more down-regulated genes than up-regulated genes, whereas 84-261 had more up-regulated genes than down-regulated genes. These results confirm that drought-resistant S. spontaneum uses the constitutive expression of certain genes to respond to drought stress, whereas drought-sensitive S. spontaneum expresses drought-resistant genes only during drought stress. Thus, the S. spontaneum clone 13-13 exhibited stronger drought resistance than clone 84-261. The results of this study indicate that the response of S. spontaneum to drought stress involves the coordinated regulation of multiple genes and multiple biological metabolic processes and suggest that changes in gene expression might be the major regulatory method through which this species copes with drought stress.

Keywords

Saccharum spontaneum L. Drought resistance Transcriptome 

Notes

Acknowledgements

This work was supported by Grants from the Major Project of the National Natural Science Foundation of China (Nos. 31460372, 31260348, 31760417).

Author Contributions

QHY, XHW, and TJW conceived and designed the experiments and contributed to the writing of the manuscript. TJW performed the experiments. TJW and XHW analyzed the data. QHY contributed reagents/materials. All authors read and approved the final manuscript. With the consent of all copyright owners, the above paper will be published on ‘Sugar Tech.’

References

  1. Ahmad, P., and M.N.V. Prasad. 2012. Abiotic stress responses in plants. New York, NY: Springer.  https://doi.org/10.1007/978-1-4614-0634-1.CrossRefGoogle Scholar
  2. Bhargava, S., and K. Sawant. 2013. Drought stress adaptation: Metabolic adjustment and regulation of gene expression. Plant Breeding 132: 21–32.CrossRefGoogle Scholar
  3. Birol, I., S.D. Jackman, C.B. Nielsen, J.Q. Qian, R. Varhol, G. Stazyk, R.D. Morin, Y. Zhao, M. Hirst, J.E. Schein, D.E. Horsman, J.M. Connors, R.D. Gascoyne, M.A. Marra, and S.J. Jones. 2009. De novo transcriptome assembly with ABySS. Bioinformatics 25 (21): 2872–2877.PubMedCrossRefGoogle Scholar
  4. Bray, E.A., J. Bailey-Serres, and E. Weretilnyk. 2000. Responses to abiotic stresses, biochemistry and molecular biology of plants, 1158–1203. Rockville: American Society of Plant Biologists.Google Scholar
  5. Bremer, G. 1961. Problems in breeding and cytology of sugar cane. Euphytica 12 (1): 178–188.Google Scholar
  6. Chaves, M.M., J.P. Maroco, and J.S. Pereira. 2003. Understanding plant responses to drought—From genes to the whole plant. Functional Plant Biology 30 (3): 239–264.CrossRefGoogle Scholar
  7. Chen, Y.Q., Z.H. Deng, C.F. Guo, R.K. Chen, and M.Q. Zhang. 2007. Drought resistant evaluations of commonly used parents and their derived varieties. Scientia Agricultura Sinica 40 (6): 1108–1117.Google Scholar
  8. Cheng, Z.Y., M. Li, Y. Shi, P. He, L.L. He, and F.S. Li. 2015. Research of drought-response mechanism in sugarcane by high through-put sequencing-based digital gene expression profiling. Molecular Plant Breeding 13 (9): 2018–2028.Google Scholar
  9. Commodity Research Bureau. 2015. The 2015 CRB commodity yearbook. Chicago, IL: Commodity Research Bureau.Google Scholar
  10. Cossu, R.M., T. Giordani, A. Cavallini, and L. Natali. 2014. High-throughput analysis of transcriptome variation during water deficit in a poplar hybrid: A general overview. Tree Genetics & Genomes 10 (1): 53–66.CrossRefGoogle Scholar
  11. Dang, Z.H., L.L. Zheng, J. Wang, Z. Gao, S.B. Wu, Q. Zhi, and Y.C. Wang. 2013. Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna. BMC Genomics 14: 29.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Degenkolbe, T., P.T. Do, E. Zuther, D. Repsilber, D. Walther, D.K. Hincha, and K.I. Köhl. 2009. Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Molecular Biology 69 (1–2): 133–153.PubMedCrossRefGoogle Scholar
  13. Foyer, C.H., and S. Shigeoka. 2011. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology 155 (1): 93–100.PubMedCrossRefGoogle Scholar
  14. Goel, D., A.K. Singh, V. Yadav, S.B. Babbar, and K.C. Bansal. 2010. Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma 245 (1–4): 133–141.PubMedCrossRefGoogle Scholar
  15. Grabherr, M.G., B.J. Haas, M. Yassour, J.Z. Levin, D.A. Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. di Palma, B.W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, and A. Regev. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29 (7): 644–652.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Grivet, L., and P. Arruda. 2002. Sugarcane genomics: Depicting the complex genome of an important tropical crop. Current Opinion in Plant Biology 5 (2): 122–127.PubMedCrossRefGoogle Scholar
  17. Guo, B.Z. 1987. Flora of China, vol 10, number 2, 40. Bejing: Science Press.Google Scholar
  18. Guo, J.K., J. Wu, Q. Ji, C. Wang, L. Luo, Y. Yuan, Y.H. Wang, and J. Wang. 2008. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. Journal of Genetics Genomics 35 (2): 105–118.PubMedCrossRefGoogle Scholar
  19. Harvey, P.J., B.F. Campanella, P.M.L. Castro, H. Harms, E. Lichtfouse, A.R. Schäffner, S. Smrcek, and D. Werck-Reichhart. 2002. Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environmental Science and Pollution Research 9 (1): 29–47.PubMedCrossRefGoogle Scholar
  20. Hornett, E.A., and C.W. Wheat. 2012. Quantitative RNA-Seq analysis in non-model species: Assessing transcriptome assemblies as a scaffold and the utility of evolutionary divergent genomic reference species. BMC Genomics 13 (1): 361.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Hu, H.H., M.Q. Dai, J.L. Yao, B.Z. Xiao, X.H. Li, Q.F. Zhang, and L.Z. Xiong. 2006. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. PANS 103 (35): 12987–12992.CrossRefGoogle Scholar
  22. Huang, C.M., L.T. Yang, Y.R. Li, Z.N. Deng, Y.W. Wei, and Y.Q. Pan. 2009. Isolation and characterization of a gene encoding the Δ-1-pyrroline-5-carboxy-late synthetase in sugar (Saccharum officinarum L.). Guangxi Agricultural Sciences 40 (2): 113–119.Google Scholar
  23. Huang, L.Y., F. Zhang, F. Zhang, W.S. Wang, Y.L. Zhou, B.Y. Fu, and Z.K. Li. 2014. Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress. BMC Genomics 15: 1026.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Humbert, S., S. Subedi, J. Cohn, B. Zeng, Y.M. Bi, X. Chen, T. Zhu, P.D. McNicholas, and S.J. Rothstein. 2013. Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses. BMC Genomics 14: 3.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Kakumanu, A., M.M.M. Ambavaram, C. Klumas, A. Krishnan, U. Batlang, E. Myers, R. Grene, and A. Pereira. 2012. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiology 160 (2): 846–867.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Kushwaha, H.R., A.K. Singh, S.K. Sopory, S.L. Singla-Pareek, and A. Pareek. 2009. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation. BMC Genomics 10: 200.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Lembke, C.G., M.Y. Nishiyama Jr., P.M. Sato, R.F. de Andrade, and G.M. Souza. 2012. Identification of sense and antisense transcripts regulated by drought in sugarcane. Plant Molecular Biology 79 (4–5): 461–477.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Lenka, S.K., A. Katiyar, V. Chinnusamy, and K.C. Bansal. 2011. Comparative analysis of drought responsive transcriptome in indica rice genotypes with contrasting drought tolerance. Plant Biotechnology Journal 9 (3): 315–327.PubMedCrossRefGoogle Scholar
  29. Li, B., and C.N. Dewey. 2011. RSEM: Accurate transcript quantification from RNA-Seq datawith or without a reference genome. BMC Bioinformatics 12: 323.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Li, J.M., B. Liu, F. Cheng, X.W. Wang, M.G.M. Aarts, and J. Wu. 2014. Expression profiling reveals functionally redundant multiple-copy genes related to zinc, iron and cadmium responses in Brassica rapa. New Phytologist 203 (1): 182–194.PubMedCrossRefGoogle Scholar
  31. Li, C.N., M.K. Srivastava, Q. Nong, L.T. Yang, and Y.R. Li. 2013. Molecular cloning and characterization of SoNCED, a novel gene encoding 9-cis-epoxycarotenoid dioxygenase from sugarcane (Saccharum officinarum L.). Genes & Genomics 35 (1): 101–109.CrossRefGoogle Scholar
  32. Li, C.H., H.L. Sun, A.Q. Chen, X.X. Ning, H.F. Wu, S. Qin, Q.Z. Xue, and J.M. Zhao. 2010. Identification and characterization of an intracellular Cu, Zn-superoxide dismutase (icCu/ZnSOD) gene from clam Venerupis philippinarum. Fish & Shellfish Immunology 28 (3): 499–503.CrossRefGoogle Scholar
  33. Liu, H.B., X.L. Liu, H.S. Su, X. Lu, C.H. Xu, J. Mao, X.Q. Lin, C.J. Li, X.J. Li, and Q.Y. Zi. 2017. Transcriptome difference analysis of Saccharum spontaneum roots in response to drought stress. Scientia Agricultura Sinica 50 (6): 1167–1178.Google Scholar
  34. Liu, J.X., Y.X. Que, J.L. Guo, L.P. Xu, J.Y. Wu, and R.K. Chen. 2012. Molecular cloning and expression analysis of a WRKY transcription factor in sugarcane. African Journal of Biotechnology 11 (24): 6434–6444.Google Scholar
  35. Liu, F.X., W.Y. Xu, Q. Wei, Z.H. Zhang, Z. Xing, L.B. Tan, C. Di, D.X. Yao, C.C. Wang, Y.J. Tan, H. Yan, Y. Ling, C.Q. Sun, Y.B. Xue, and Z. Su. 2010. Gene expression profiles deciphering rice phenotypic variation between Nipponbare (Japonica) and 93-11 (Indica) during oxidative stress. PLoS ONE 5: e8632.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△CT method. Methods 25 (4): 402–408.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Ma, W.J. 2013. Physiological change and gene expression response of Catalpa bungei superior clone 2–8 seedlings to drought stress. Beijing: Chinese Academy of Forestry.Google Scholar
  38. Ma, H., Z.Q. Lu, B.B. Liu, Q. Qiu, and J.Q. Liu. 2013. Transcriptome analyses of a Chinese hazelnut species Corylus mandshurica. BMC Plant Biology 13 (1): 152.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Mohammadi, M., N.N.V. Kav, and M.K. Deyholos. 2007. Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes. Plant, Cell and Environment 30 (5): 630–645.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Morant, M., S. Bak, B.L. Møller, and D. Werck-Reichhart. 2003. Plant cytochromes P450: Tools for pharmacology, plant protection and phytoremediation. Current Opinion in Biotechnology 14 (2): 151–162.PubMedCrossRefGoogle Scholar
  41. Oh, S.J., Y.S. Kim, C.W. Kwon, H.K. Park, J.S. Jeong, and J.K. Kim. 2009. Over expression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiology 150 (3): 1368–1379.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Patade, V.Y., S. Bhargava, and P. Suprasanna. 2012. Transcript expression profiling of stress responsive genes in response to short-term salt or PEG stress in sugarcane leaves. Molecular Biology Reports 39 (3): 3311–3318.PubMedCrossRefGoogle Scholar
  43. Patade, V.Y., A.N. Rai, and P. Suprasanna. 2010. Expression analysis of sugarcane shaggy-like kinase (SuSK) gene identified through cDNA subtractive hybridization in sugarcane (Saccharum officinarum L.). Protoplasma 248 (3): 613–621.PubMedCrossRefGoogle Scholar
  44. Prabu, G., and D.T. Prasad. 2012. Functional characterization of sugarcane MYB transcription factor gene promoter (PCcMYBAS1) in response to abiotic stresses and hormones. Plant Cell Reports 31 (4): 661–669.PubMedCrossRefGoogle Scholar
  45. Price, A.H., J.E. Cairns, P. Horton, H.G. Jones, and H. Griffiths. 2002. Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: Progress and new opportunities to integrate stomatal and mesophyll responses. Journal of Experimental Botany 53 (371): 989–1004.PubMedCrossRefGoogle Scholar
  46. Qi, X.H., X.W. Xu, X.J. Lin, W.J. Zhang, and X.H. Chen. 2012. Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile. Genomics 99: 160–168.PubMedCrossRefGoogle Scholar
  47. Rabbani, M.A., K. Maruyama, H. Abe, M.A. Khan, K. Katsura, Y. Ito, K. Yoshiwara, M. Seki, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2003. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiology 133 (4): 1755–1767.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Reddy, A.R., W. Ramakrishna, A.C. Sekhar, N. Ithal, P.R. Babu, M.F. Bonaldo, M.B. Soares, and J.L. Bennetzen. 2002. Novel genes are enriched in normalized cDNA libraries from drought-stressed seedlings of rice (Oryza sativa L. subsp. Indica cv. Nagina 22). Genome 45 (1): 204–211.PubMedCrossRefGoogle Scholar
  49. Rodriguez-uribe, L., S.M. Higbie, J.M. Stewart, T. Wilkins, W. Lindemann, C. Sengupta-Gopalan, and J.F. Zhang. 2011. Identification of salt responsive genes using comparative microarray analysis in upland cotton (Gossypium hirsutum L.). Plant Science 180 (3): 461–469.PubMedCrossRefGoogle Scholar
  50. Ross, J., Y. Li, E. Lim, and D.J. Bowles. 2001. Higher plant glycosyltransferases. Genome Biology 2: reviews3004.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Rushton, P.J., and I.E. Somssich. 1998. Transcriptional control of plant genes to responsive to pathogens. Current Opinion in Plant Biology 1 (4): 311–315.PubMedCrossRefGoogle Scholar
  52. Schuler, M.A., and D. Werck-Reichhart. 2003. Functional genomics of P450s. Annual Review of Plant Biology 54: 629–667.PubMedCrossRefGoogle Scholar
  53. Schweighofer, A., H. Hirt, and I. Meskiene. 2004. Plant PP2C phosphatases: Emerging functions in stress signaling. Trends in Plant Science 9 (5): 236–243.PubMedCrossRefGoogle Scholar
  54. Shan, X.H., Y.D. Li, Y. Jiang, Z.L. Jiang, W.Y. Hao, and Y.P. Yuan. 2013. Transcriptome profile analysis of maize seedlings in response to high-salinity, drought and cold stresses by deep sequencing. Plant Molecular Biology Reporter 31 (6): 1485–1491.CrossRefGoogle Scholar
  55. Shanker, A.K., M.M. Maheswari, S.K. Yadav, S. Desai, D. Bhanu, N.B. Attal, and B. Venkateswarlu. 2014. Drought stress responses in crops. Functional & Integrative Genomics 14 (1): 11–22.CrossRefGoogle Scholar
  56. Shi, T., Z.H. Gao, L.J. Wang, Z. Zhang, W.B. Zhuang, H.L. Sun, and W.J. Zhong. 2012. Identification of differentially-expressed genes associated with pistil abortion in Japanese apricot by genome-wide transcriptional analysis. PLoS ONE 7 (10): e47810.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Shinozaki, K., and K. Yamaguchi-Shinozaki. 1997. Gene expression and signal transduction in water stress response. Plant Physiology 115 (2): 327–334.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Shinozaki, K., and K. Yamaguchi-Shinozaki. 2000. Molecular responses to dehydration and low temperature: Differences and cross talk between two stress signaling pathways. Current Opinion Plant Biology 3 (3): 217–223.CrossRefGoogle Scholar
  59. Shinozaki, K., and K. Yamaguchi-Shinozaki. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58 (2): 221–227.PubMedCrossRefGoogle Scholar
  60. Sreeinivasan, T.V., B.S. Ahloowalia, D.J. Heinz, and D.J. Heinz. 1987. Sugarcane improvement through breeding, 211–253. Amsterdam: Elsevier.CrossRefGoogle Scholar
  61. Tao, X., Y.H. Gu, H.Y. Wang, W. Zheng, X. Li, C.W. Zhao, and Y.Z. Zhang. 2012. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam.]. PLoS ONE 7 (4): e36234.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Trujillo, L.E., M. Sotolongo, C. Menéndez, M.E. Ochogavía, Y. Coll, I. Hernández, O. Borrás-Hidalgo, B.P. Thomma, P. Vera, and L. Hernández. 2008. SodERF3, a novel sugarcane ethylene responsive factor (ERF) enhances salt and drought tolerance when over expressed in tobacco plants. Plant and Cell Physiology 49 (4): 512–525.PubMedCrossRefGoogle Scholar
  63. Valliyodan, B., and H.T. Nguyen. 2006. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology 9 (2): 189–195.PubMedCrossRefGoogle Scholar
  64. Waclawovsky, A.J., P.M. Sato, C.G. Lembke, P.H. Moore, and G.M. Souza. 2010. Sugarcane for bioenergy production: An assessment of yield and regulation of sucrose content. Plant Biotechnology Journal 8 (3): 263–276.PubMedCrossRefGoogle Scholar
  65. Wang, L., P.H. Li, and T.P. Brutnell. 2010. Exploring plant transcriptomes using ultra high-throughput sequencing. Briefings in Functional Genomics 9 (2): 118–128.PubMedCrossRefGoogle Scholar
  66. Wang, T.J., X.H. Wang, and Q.H. Yang. 2017. Comprehensive evaluation on drought resistance difference of twenty-six Saccharum spontaneum L. accessions. Chinese Journal of Tropical Crops 38 (9): 1–7.Google Scholar
  67. Wang, H.G., H.L. Zhang, F.H. Gao, J.X. Li, and Z.C. Li. 2007. Comparison of gene expression between upland and lowland rice cultivars under water stress using cDNA microarray. Theoretical and Applied Genetics 115: 1109–1126.PubMedCrossRefGoogle Scholar
  68. Winicov, I. 1998. New molecular approaches to improving salt tolerance in crop plants. Annals of Botany 82 (6): 703–710.CrossRefGoogle Scholar
  69. Wu, H.L., D. Chen, J.X. Li, B. Yu, X.Y. Qiao, H.L. Huang, and Y.M. He. 2013. De Novo characterization of leaf transcriptome using 454 sequencing and development of EST-SSR markers in tea (Camellia sinensis). Plant Molecular Biology Reporter 31 (3): 524–538.CrossRefGoogle Scholar
  70. Xue, T., D. Wang, S. Zhang, J. Ehlting, F. Ni, S. Jakab, C. Zheng, and Y. Zhong. 2008. Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genomics 9: 550–570.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Yu, L.J., Y.F. Luo, B. Liao, L.J. Xie, L. Chen, S. Xiao, J.T. Li, S.N. Hu, and W.S. Shu. 2012a. Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytologist 195 (1): 97–112.PubMedCrossRefGoogle Scholar
  72. Yu, S.C., F.L. Zhang, Y.J. Yu, D.S. Zhang, X.Y. Zhao, and W.H. Wang. 2012b. Transcriptome profiling of dehydration stress in the Chinese Cabbage (Brassica rapa L. ssp. pekinensis) by tag sequencing. Plant Molecular Biology Reporter 30 (1): 17–28.CrossRefGoogle Scholar
  73. Zhou, Z.S., S.N. Yang, H. Li, C.C. Zhu, Z.P. Liu, and Z.M. Yang. 2013. Molecular dissection of mercury responsive transcriptome and sense/antisense genes in Medicago truncatula. Journal of Hazardous Materials 252–253: 123–131.PubMedCrossRefGoogle Scholar
  74. Zhu, J.K. 2000. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology 124 (3): 941–948.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Zhu, J.H., P.E. Verslues, X.W. Zheng, B.H. Lee, X.Q. Zhan, Y. Manabe, I. Sokolchik, Y.M. Zhu, C.H. Dong, J.K. Zhu, P.M. Hasegawa, and R.A. Bressan. 2010. HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Nati Acad Sci USA 102 (28): 9966–9971.CrossRefGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 2020

Authors and Affiliations

  1. 1.Sugarcane Research InstitutionYunnan Agricultural UniversityKunmingPeople’s Republic of China
  2. 2.School of Chemistry and Life SciencesChuxiong Normal UniversityChuxiongPeople’s Republic of China

Personalised recommendations