Advertisement

Sugar Tech

, Volume 21, Issue 6, pp 1039–1044 | Cite as

Allometric Equations to Estimate Sugarcane Aboveground Biomass

  • Eric Xavier de CarvalhoEmail author
  • Rômulo Simões Cezar Menezes
  • Everardo Valadares de Sá Barreto Sampaio
  • Djalma Elzébio Simões Neto
  • José Nildo Tabosa
  • Luiz Rodrigues de Oliveira
  • Aluizio Low Simões
  • Aldo Torres Sales
Short Communication
  • 32 Downloads

Abstract

Sugarcane harvest implies in the movement of very large amounts of biomass and, therefore, demands careful planning of logistics. Accurate pre-harvest estimation of sugarcane field productivity provides useful data to plan harvest, transportation, selling and industrial processing activities. Currently, the estimation of sugarcane biomass in the field is based on destructive techniques. The use of allometric equations is an adequate, nondestructive tool to provide this information, but these equations are scarcely available for sugarcane. We created regression models to estimate stem fresh (SFB, kg) and total aboveground dry biomass (AB, kg) based on plant height (H, cm) and diameter (D, cm), for different Brazilian sugarcane varieties. The models adequately estimated biomass for all sugarcane varieties. Based on that, we developed two general equations valid for all varieties: SFB = 0.046 H × D1.5647 and AB = 0.4001 H × D1.0743. To calculate biomass per hectare, SFB and AB must be multiplied by the average number of stems in the row (N) and divided by row spacing (S). In our study site, N was adequately estimated counting stems in four 100-m row segments. Overall, precise estimates of stem and whole plant biomass for sugarcane can be obtained using the general equations and the number of stems per area. We believe these equations are also useful to estimate biomass for other sugarcane varieties around the world, considering the simplicity of sugarcane plant structure.

Keywords

Stem diameter Plant height Number of stems Cane weight Dry biomass 

Notes

Acknowledgements

The authors of this paper thank CNPq, Capes and Facepe for the scholarships to students and research scientists and also for financial support through the following research grants: “Consolidation of the Research Center on Water and Carbon Dynamics in Ecosystems in the State of Pernambuco” (Edital 08/2014 Facepe Pronem, APQ-0532-5.01/14); and also for the project “Data generation and modeling to support policies for adaptation to climatic variability in agricultural systems in the Northeast region” (CNPq Edital 37/2013–Climatic Changes, Proc. 403129/2013-3).

References

  1. Antunes, W.C., M.F. Pompelli, D.M. Carretero, and F.M. DaMatta. 2008. Allometric models for non-destructive leaf area estimation in coffee (Coffea arabica and Coffea canephora). Annals of Applied Biology 153(1): 33–40.  https://doi.org/10.1111/j.1744-7348.2008.00235.x.CrossRefGoogle Scholar
  2. Bezerra, T.L., and A.J. Ragauskas. 2016. A review of sugarcane bagasse for second-generation bioethanol and biopower production. Biofuels, Bioproducts and Biorefining 10(5): 634–647.  https://doi.org/10.1002/bbb.1662.CrossRefGoogle Scholar
  3. Cardona, C.A., J.A. Quintero, and I.C. Paz. 2010. Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresource Technology 101(13): 4754–4766.  https://doi.org/10.1016/J.biortech.2009.10.097.CrossRefPubMedGoogle Scholar
  4. Cerqueira, D.A., G. Rodrigues Filho, and C.S. Meireles. 2007. Optimization of sugarcane bagasse cellulose acetylation. Carbohydrate Polymers 69(3): 579–582.  https://doi.org/10.1016/j.carbpol.2007.01.010.CrossRefGoogle Scholar
  5. Chandel, A.K., S.S. Silva, W. Carvalho, and O.V. Singh. 2012. Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. Journal of Chemical Technology and Biotechnology 87: 11–20.  https://doi.org/10.1002/jctb.2742.CrossRefGoogle Scholar
  6. Defante, L.R., F.V. Olivier, and L. Sauer. 2018. Rapid expansion of sugarcane crop for biofuels and influence on food production in the first producing region of Brazil. Food Policy 79: 121–131.  https://doi.org/10.1016/j.foodpol.2018.06.005.CrossRefGoogle Scholar
  7. Dias, M.O.S., R. Maciel Filho, P.E. Mantelatto, O. Cavalett, C.E.V. Roussel, A. Bonomi, and M.R.L.V. Leal. 2015. Sugarcane processing for ethanol and sugar in Brazil. Environmental Development 15: 35–51.  https://doi.org/10.1016/j.envdev.2015.03.004.CrossRefGoogle Scholar
  8. EMBRAPA. 1997. Manual de Métodos de Análise de Solo. Rio de Janeiro: EMBRAPA-CNPS.Google Scholar
  9. Fujiwara, E., E. Ono, and C.K. Suzuki. 2012. Application of an optical fiber sensor on the determination of sucrose and ethanol concentrations in process streams and effluents of sugarcane bioethanol industry. IEEE Sensors Journal 12(9): 2839–2843.  https://doi.org/10.1109/JSEN.2012.2204246.CrossRefGoogle Scholar
  10. Galdos, M.V., C.C. Cerri, and C.E.P. Cerri. 2009. Soil carbon stocks under burned and unburned sugarcane in Brazil. Geoderma 153: 347–352.  https://doi.org/10.1016/j.geoderma.2009.08.025.CrossRefGoogle Scholar
  11. Herrmann, R., C. Jumbe, M. Bruentrup, and E. Osabuohien. 2018. Competition between biofuel feedstock and food production: Empirical evidence from sugarcane outgrower settings in Malawi. Biomass and Bioenergy 114: 100–111.  https://doi.org/10.1016/j.biombioe.2017.09.002.CrossRefGoogle Scholar
  12. Hofsetz, K., and M.A. Silva. 2012. Brazilian sugarcane bagasse: Energy and non-energy consumption. Biomass and Bioenergy 46: 564–573.  https://doi.org/10.1016/j.biombioe.2012.06.038.CrossRefGoogle Scholar
  13. Macedo, I.C., J.E.A. Seabra, and J.E.A.R. Silva. 2008. Greenhouse gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass and Bioenergy 32(7): 582–595.  https://doi.org/10.1016/J.BIOMBIOE.2007.12.006.CrossRefGoogle Scholar
  14. Pandey, A., C.R. Soccol, P. Nigam, and V.T. Soccol. 2000. Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresource Technology 74(1): 69–80.  https://doi.org/10.1016/S0960-8524(99)00142-X.CrossRefGoogle Scholar
  15. Paul, K.I., S.H. Roxburgh, J.R. England, P. Ritson, T. Hobbs, K. Brooksbank, and R.J. Raison. 2013. Development and testing of allometric equations for estimating above-ground biomass of mixed-species environmental plantings. Forest Ecology and Management 310(15): 483–494.  https://doi.org/10.1016/J.foreco.2013.08.054.CrossRefGoogle Scholar
  16. Sexton, J., Y.L. Everingham, and G. Inman-Bamber. 2017. A global sensitivity analysis of cultivar trait parameters in a sugarcane growth model for contrasting production environments in Queensland, Australia. European Journal of Agronomy 88: 96–105.  https://doi.org/10.1016/J.EJA.2015.11.009.CrossRefGoogle Scholar
  17. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller. 2007. Climate change 2007 - The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press.Google Scholar
  18. Youkhana, A.H., R.M. Ogoshi, J.R. Kiniry, M.N. Meki, M.H. Nakahata, and S.E. Crow. 2017. Allometric models for predicting aboveground biomass and carbon stock of tropical perennial C4 grasses in Hawaii. Frontiers in Plant Science 8: 650–659.  https://doi.org/10.3389/fpls.2017.00650.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 2019

Authors and Affiliations

  • Eric Xavier de Carvalho
    • 1
    Email author
  • Rômulo Simões Cezar Menezes
    • 2
  • Everardo Valadares de Sá Barreto Sampaio
    • 2
  • Djalma Elzébio Simões Neto
    • 3
  • José Nildo Tabosa
    • 1
  • Luiz Rodrigues de Oliveira
    • 1
  • Aluizio Low Simões
    • 2
  • Aldo Torres Sales
    • 2
  1. 1.Agronomic Institute of Pernambuco (IPA)RecifeBrazil
  2. 2.Federal University of Permanbuco (UFPE)RecifeBrazil
  3. 3.Federal Rural University of PermanbucoRecifeBrazil

Personalised recommendations