Sugar Tech

pp 1–7 | Cite as

Photocatalytic Effect of TiO2 Nanoparticles on Morphological and Photochemical Properties of Stevia Plant (Stevia Rebaudiana Bertoni)

  • M. Rezaizad
  • H. Hashemi-MoghaddamEmail author
  • H. Abbaspour
  • M. Gerami
  • A. Mueller
Research Article


In the present study, the effects of different concentrations of titanium dioxide (TiO2) nanoparticles on morphological parameters and on the quantity of the produced steviol glycosides were investigated as well as its effect on the parameters such as fresh weight of shoots, dry weight of shoots, membrane lipid peroxidation [in terms of malondialdehyde (MDA) assay], and concentration of stevioside glycoside in the plants. The results revealed that the plants treated with 400 ppm TiO2 nanoparticles had the highest fresh and dry weight of shoots, whereas those treated with 200 ppm had the lowest concentration of MDA and the highest quantity of stevioside. Therefore, the treatment with TiO2 nanoparticles had a significant positive effect on morphological and phytochemical properties of Stevia plant. The TiO2 nanoparticles transmit light energy to electrons, convert them into chemical energy, and ultimately increase CO2 stabilization, making them very efficient with respect to their photocatalytic properties. The results are very encouraging, and they show that there is a great potential for the use of such nanoparticles in increasing the metabolites in the plant. This is the first study evaluating the favorable effects of TiO2 nanoparticles on the highly valuable medicinal plant Stevia (Stevia rebaudiana Bertoni), in terms of uptake, translocation, and alteration of metabolic pathways in a concentration-dependent mode.


Stevia Rebaudiana Bertoni Titanium dioxide nanoparticles Morphological and phytochemical properties Photocatalysis 



We are grateful to the Damghan Islamic Azad University, Laboratory Research Complex, for valuable technical assistance.


  1. Abdullah, R., Z. Alizah, W.H. Wee, C.L. Leaw, and C.B. Yeap. 2005. Immature embryo: a useful tool for oil palm (Elaeis guineensis Jacq.) genetic transformation studies. Electronic Journal of Biotechnology 8: 24–34.CrossRefGoogle Scholar
  2. Chaves, M.M., and M.M. Oliveria. 2004. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany 55: 2365–2384.CrossRefGoogle Scholar
  3. Din, M.S.U., M.S. Chowdhury, M.M.H. Khan, M.B.U. Din, R. Ahmed, and M.A. Baten. 2006. In vitro propagation of Stevia rebaudiana Bert in Bangladesh. African Journal of Biotechnology 5: 1238–1240.Google Scholar
  4. Ding, Z., G.Q. Lu, and P.F. Greenfield. 2000. Role of crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. The Journal of Physical Chemistry B 104: 4815–4820.CrossRefGoogle Scholar
  5. Duffy, E.F., F.A. Touati, and S.C. Kehoe. 2004. A novel TiO2-assisted solar photocatalytic batchprocess disinfection reactor for the treatment of biological and chemical contaminants in domestic drinking water in development countries. Solar Energy 77: 649–655.CrossRefGoogle Scholar
  6. Esterbauer, H., P. Eckl, and A. Ortner. 1990. Possible mutagens derived from lipids and lipid precursors. Mutation Research 238: 223–233.CrossRefGoogle Scholar
  7. Esterbauer, H., R.J. Schaur, and H. Zollner. 1991. Chemistry and biochemistry of 4 hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biology and Medicine 11: 81–128.CrossRefGoogle Scholar
  8. Ferri, L.A., W. Alves-Do-Prado, S.S. Yamada, S. Gazola, M.R. Batista, and R.B. Bazotte. 2006. Investigation of the antihypertensive effect of oral crude stevioside in patients with mild essential hypertension. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 20: 732–736.CrossRefGoogle Scholar
  9. Frazer, L. 2001. Titanium dioxide: environmental white knight? Environmental Health Perspectives 109: A147–A177.Google Scholar
  10. Gao, F., I. Chao, L. Zheng, S. Mingyu, W. Xiao, F. Yang, W. Cheng, and Y. Ping. 2006. Mechanism of nano anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biological Trace Element Research 111: 239–245.CrossRefGoogle Scholar
  11. Geuns, J.M.C. 2003. Stevioside Phytochemistry. Phytochemistry 64: 913–921.CrossRefGoogle Scholar
  12. Goyal, S., G.R. Samsher, and R. Goyal. 2010. Stevia (Stevia rebaudiana) a bio-sweetener: a review. International Journal of Food Sciences and Nutrition 61: 1–10.CrossRefGoogle Scholar
  13. Gregersen, S., P.B. Jeppesen, J.J. Holst, and K. Hermansen. 2004. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism 53: 73–106.CrossRefGoogle Scholar
  14. Hao, Y., X. Cao, C. Ma, Z. Zhang, N. Zhao, A. Ali, T. Hou, Z. Xiang, J. Zhuang, and S. Wu. 2017. Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Frontiers in Plant Science 8: 1332.CrossRefGoogle Scholar
  15. Hao, Y., W. Yuan, C. Ma, J. White, Z. Zhang, M. Adeel, T. Zhou, R. Yukui, and B. Xing. 2018. Engineered nanomaterials suppress Turnip mosaic virus infection in tobacco (Nicotiana benthamiana). Environmental Science: Nano 5: 1685–1693.Google Scholar
  16. Heat, R.L., and L. Packer. 1968. Photoperaxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidantion. Archives of Biophysics 125: 189–198.CrossRefGoogle Scholar
  17. Hendawey, M.H., R.A. El-Fadl, and T.S. El-Din. 2015. Biochemical role of some nanoparticles in the production of active constituents in Stevia Rebaudiana L. Callus. Life Science Journal 12: 1–13.Google Scholar
  18. Hong, F., J. Zhou, C. Liu, F. Yang, C. Wu, L. Zheng, and P. Yang. 2005. Effects of Nano-TiO2 on photochemical reaction of chloroplasts of Spinach. Biological Trace Element Research 105: 269–279.CrossRefGoogle Scholar
  19. Humphrey, T.V., A.S. Richman, R. Menassa, and E. Jim. 2006. Spatial organisation of four enzymes from Stevia rebaudiana Bertoni that are involved in steviol glycoside synthesis. Plant Molecular Biology 61: 47–62.CrossRefGoogle Scholar
  20. Javed, R., A. Mohamed, B. Yucesan, E. Gurel, R. Kausar, and M. Zia. 2017a. CuO nanoparticles significantly influence in vitro culture, steviol glycosides, and antioxidant activities of Stevia rebaudiana Bertoni. Plant Cell, Tissue and Organ Culture 131: 611–620.CrossRefGoogle Scholar
  21. Javed, R., M. Usman, B. Yucesan, M. Zia, and E. Gurel. 2017b. Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiology and Biochemistry 110: 94–99.CrossRefGoogle Scholar
  22. Ji, Y., Y. Zhou, C. Ma, Y. Feng, Y. Hao, Y. Rui, W. Wu, X. Gui, Y. Han, and Y. Wang. 2017. Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiology and Biochemistry 110: 82–93.CrossRefGoogle Scholar
  23. Johnson, A. 2005. Agriculture and nanotechnology.
  24. Karuppusamy, S. 2009. A review on trends in production of secondary metabolites from higher plants by invitro tissue, organ and cell cultures. Journal of Medicinal Plants 3: 1222–1239.Google Scholar
  25. Kohda, H., R. Kasai, K. Yamasaki, K. Murakami, and O. Tanaka. 1976. New sweet diterpene glucosides from Stevia rebaudiana. Phytochemistry 15: 981–983.CrossRefGoogle Scholar
  26. Linglan, M., L. Chao, Q. Chunxiang, Y. Sitao, L. Jie, G. Fengqing, and H. Fashui. 2008. Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biological Trace Element Research 122: 168–178.CrossRefGoogle Scholar
  27. Mamta, P.R., P. Vijaylata, G. Arvind, S. Bikram, K.B. Ravinde, and T. Rupinder. 2010. Stimulatory effect of phosphate-solubilizing bacteria on plant growth. Stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Soil Ecology 46: 222–229.CrossRefGoogle Scholar
  28. Mandeh, M., M. Omidi, and M. Rahaie. 2012. In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biological Trace Element Research 150: 376–380.CrossRefGoogle Scholar
  29. Mingyu, S., F. Hong, C. Liu, X. Wu, X. Liu, and L. Chen. 2007. Effects of nano-anatase TiO2 on absorption, distribution of light and photo reduction activities of chloroplast membrane of spinach. Biological Trace Element Research 118: 120–130.CrossRefGoogle Scholar
  30. Moaveni, P., K. Sharifi, and D. Fathollah. 2014. The effect of titanium nanoparticle on some of the technological, physiological and functional traits in sugar beet. Quarterly Journal of Ecophysiology of Crops 6: 12–18.Google Scholar
  31. Mohammadi, R., R. Maali-Amiri, and N.L. Mantari. 2014. Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russian Journal of Plant Physiology 61: 768–775.CrossRefGoogle Scholar
  32. Nair, R., S.H. Varghese, B.G. Nair, T. Maekawa, Y. Yoshida, and D. Sakhti Kumar. 2010. Nano particulate material delivery to plants. Plant Science 179: 154–163.CrossRefGoogle Scholar
  33. Nanotechnology-Specialist-Headquarters. 2005. Complementary document future strategy (Ten Years Strategy of Nanotechnology Development in the Islamic Republic of Iran). 5.
  34. Ramesh, K., V. Singh, and N.W. Megeji. 2006. Cultivation of Stevia rebaudiana Bertoni. comprehensive review. Advances in Agronomy 89: 137–177.CrossRefGoogle Scholar
  35. Rita-Elkins, M.H. 1997. Stevia Nature’s Sweeteners. Woodland Publishing Inc. (Web article), 1–29.Google Scholar
  36. Saber, S., Z. Ghesimi-Hagh, and S. Mostafavi. 2012. Effect and mechanism of titanium oxide nanoparticles on plant physiology processes of spinach (Spinacia oleracea). In The 2nd National Conference on Sustainable Agriculture and Environment, 1–16.Google Scholar
  37. Shaw, A.K., and Z. Hossain. 2013. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings’. Chemosphere 93: 906–915.CrossRefGoogle Scholar
  38. Shibata, H., S. Sonoke, H. Ochiai, H. Nishihashi, and M. Yamada. 1991. Glucosylation of steviol and steviol glucosides in extracts from Stevia rebaudiana Bertoni. Plant Physiology and Biochemistry 95: 152–156.CrossRefGoogle Scholar
  39. Wang, H.F., X.H. Zhong, W.Y. Shi, and B. Gao. 2011. Study of malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in chickens infected with avian infectious bronchitis virus. African Journal of Biotechnology 10: 9213–9217.CrossRefGoogle Scholar
  40. Xia, L., S.C. Lenaghan, M. Zhang, Z. Zhang, and Q. Li. 2010. Naturally occurring nanoparticles from English ivy: an alternative to metal-based nanoparticles for UV protection. Journal of Nanobiotechnology 8: 12.CrossRefGoogle Scholar
  41. Yang, F., F. Hong, W. You, C. Liu, F. Gao, C. Wu, and P. Yang. 2006. Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research 110: 179–190.CrossRefGoogle Scholar
  42. Yang, F., C. Liu, F. Gao, M.Y. Su, X. Wu, L. Zheng, F.S. Hong, and P. Yang. 2007. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biological Trace Element Research 119: 77–88.CrossRefGoogle Scholar
  43. Zar-Afshar, M., H. Askari, S.M. Hosseini, and M. Rahaei. 2014. The effect of titanium dioxide nanoparticle spraying on modifying the destructive effects of drought in wild pear (Pyrus biosseriana buhse.). Journal of Environmental Protection Plants 3: 1–17.Google Scholar
  44. Zheng, L., M.Y. Su, X. Wu, C. Liu, C.X. Qu, L. Chen, H. Huang, X.Q. Liu, and F.S. Hong. 2008. Antioxidant stress promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biological Trace Element Research 121: 69–79.CrossRefGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 2019

Authors and Affiliations

  1. 1.Department of BiologyIslamic Azad UniversityDamghanIran
  2. 2.Department of ChemistryIslamic Azad UniversityDamghanIran
  3. 3.Sana Institute of Higher EducationSariIran
  4. 4.Department of Chemistry and BiochemistryCentral Michigan UniversityMount PleasantUSA

Personalised recommendations