Advertisement

Sugar Tech

pp 1–10 | Cite as

El Niño–Southern Oscillation and Its Impacts on Local Climate and Sugarcane Yield in Brazil

  • Paulo Cesar SentelhasEmail author
  • André Belmont Pereira
Research Article
  • 15 Downloads

Abstract

Faced with the great interference of El Niño–Southern Oscillation (ENSO) into the local climate of a given site in conjunction with agricultural systems, the current study aimed at assessing the effects of ENSO on thermal and water regimes at different Brazilian sites, as well as its impacts on sugarcane crop yield. The DSSAT CSM-CANEGRO model, parameterized under the Brazilian environmental conditions, was used to simulate sugarcane yield at four sites of different Brazilian states from 1979 to 2010 for three types of soils and two types of simulations, Seasonal and Sequence. The outcomes obtained herein pointed out that ENSO events distinctly impinged upon meteorological variables regime; however, a clear trend as to the air temperature, global solar radiation and rainfall regimes could not be noticed owing to a large variability found in the current study. With regard to sugarcane yield, some trends were observed. In Jataí, GO, no changes greater than ± 1 t ha−1 occurred. In João Pessoa, PB, there was a trend of lower yields during El Niño and La Niña years and higher yields during neutral years. Moreover, a contrasting scenario was envisioned in Piracicaba, SP, and Londrina, PR, where yields tended to be higher than historical average under both El Niño and La Niña events, while during neutral years, yield tended to be smaller than average.

Keywords

ENSO Air temperature Global solar radiation Rainfall Yield Saccharum officinarum L. 

Notes

Acknowledgements

Authors are very grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for some funds provided, as well as to the National Institute of Meteorology (INMET) and National Agency of Water (ANA) for the concession of weather data that made this study possible. Special thanks are also devoted to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, for the productivity fellowship in research bestowed to the first author of the current manuscript.

Authors’ Contribution

PCS and ABP were both responsible for designing the study, preparing the dataset, analyzing the data, discussing the results and writing the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12355_2019_725_MOESM1_ESM.docx (965 kb)
Supplementary material 1 (DOCX 964 kb)

References

  1. Almeida, H.A., and E.A. Medeiros. 2017. Variability in rainfall patterns in two mesoregions of Paraiba and its relationship with the El Niño Southern Oscillation phenomenon. Journal of Environmental Analysis and Progress 2: 177–185.  https://doi.org/10.24221/jeap.2.3.2017.1340.177-185.CrossRefGoogle Scholar
  2. Alvares, C.A., J.L. Stape, P.C. Sentelhas, J.L.M. de Gonçalves, and G. Sparovek. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711–728.  https://doi.org/10.1127/0941-2948/2013/0507.CrossRefGoogle Scholar
  3. Alves, J.M.B., and C.A. Repelli. 1992. Rainfall variability in the north of the Northeast and El Niño Southern Oscillation events (ENSO) in Brazil. Revista Brasileira de Meteorologia 7: 583–592.  https://doi.org/10.24221/jeap.2.3.2017.1340.177-185.Google Scholar
  4. Aragão, J.O.R. 1998. Impacts of ENSO phenomenon and dipole of the Atlantic Ocean at the Northeast of Brazil. Bulletin of Institute Français Études Andines 27: 839–844.Google Scholar
  5. Baumhard, R.L., S.A. Mauget, R.C. Schwartz, and O.R. Jones. 2016. El Niño Southern Oscillation effects on dryland crop production in the Texas high plains. Agronomy Journal 108: 736–744.  https://doi.org/10.2134/agronj2015.0403.CrossRefGoogle Scholar
  6. Berlato, M.A., H. Farenzena, and D.C. Fontana. 2005. Association between El Niño Southern Oscillation and corn yield in Rio Grande do Sul State, Brazil. Pesquisa Agropecuária Brasileira 40: 423–432.  https://doi.org/10.1590/S0100-204X2005000500001.CrossRefGoogle Scholar
  7. Bezerra, A.C., and E.P. Cavalcanti. 2008. Static energy in the north and northeast of Brazil related with the sea surface temperature. Revista Brasileira de Meteorologia 23: 239–263.  https://doi.org/10.1590/S0102-77862008000200010.CrossRefGoogle Scholar
  8. Cardozo, N.P., and P.C. Sentelhas. 2013. Climatic effects on sugarcane ripening under the influence of cultivars and crop age. Scientia Agricola 70: 449–456.CrossRefGoogle Scholar
  9. Carvalho, A.L., J.L. Souza, G.B. Lyra, and E.C. Silva. 2013. Cultivation and rainy season in the region of Rio Largo, Alagoas, Brazil based on direct methods and its relationship with El Niño Southern Oscillation. Revista Brasileira de Meteorologia 28: 192–198.CrossRefGoogle Scholar
  10. Dalmago, G.A., A. Pasinato, G.R. Cunha, A. Santi, and J.L.F. Pires. 2009 Wheat Cropping: Agricultural Zoning. Production Systems, 4. CNPTIA, EMBRAPA, Campinas, Brazil. http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Trigo/CultivodeTrigo/zoneamento.htm
  11. Dias, H.B., and P.C. Sentelhas. 2017. Evaluation of three sugarcane simulation models and their ensemble for yield estimation in commercially managed fields. Field Crops Research 213: 174–185.  https://doi.org/10.1016/j.fcr.2017.07.022.CrossRefGoogle Scholar
  12. Dias, H.B., and P.C. Sentelhas. 2018. Sugarcane yield gap analysis in Brazil—A multi-model approach for determining magnitudes and causes. Science of Total Environment 637–638: 1127–1136.  https://doi.org/10.1016/j.scitotenv.2018.05.017.CrossRefGoogle Scholar
  13. FAOSTAT. 2019. Statistical Database of Food and Agriculture Organization of the United Nations (FAO). http://faostat.fao.org/site/291/default.aspx. Accessed 02 February 2019.
  14. Fontana, D.C., and M.A. Berlato. 1996. Relationship between El Niño Southern Oscillation, rainfall and corn (Zea mays L.) yield in the State of Rio Grande do Sul, Brazil. Pesquisa Agropecuária Gaúcha 2: 39–46.Google Scholar
  15. Fontana, D.C., and M.A. Berlato. 1997. Influence of El Niño Southern Oscillation on rainfall regimes in the State of Rio Grande do Sul, Brazil. Revista Brasileria de Agrometeorologia 5: 127–132.Google Scholar
  16. Gawander, J., J. Salinger, J. Prasad, P. Rounds, and R. Kumar. 2018. El Niño-Southern Oscillation influences on sugarcane production in Fiji—An exploratory investigation. International Sugar Journal 120: 778–784.Google Scholar
  17. Grimm, A.M., and R.G. Tedeschi. 2009. ENSO and extreme rainfall events in South America. Journal of Climate 22: 1589–1609.  https://doi.org/10.1175/2008JCLI2429.1.CrossRefGoogle Scholar
  18. IBGE. 2019. Automatic Data Assessement (SIDRA). Brazilian Institute of Geography and Statistics (IBGE), Brasília, Brazil. https://www.sidra.ibge.gov.br/. Accessed 02 February 2019.
  19. Iizumi, T., J.J. Luo, A.J. Challinor, G. Sakurai, M. Yokozawa, H. Sakuma, and T. Yamagata. 2014. Impacts of El Niño Southern Oscillation on the global yields of major crops. Nature Communications 5: 1–7.CrossRefGoogle Scholar
  20. Liu, Y., X. Yang, E. Wang, and C. Xue. 2014. Climate and crop yields impacted by ENSO episodes on the North China plain. Regional Environmental Change 14: 49–59.  https://doi.org/10.1007/s10113-013-0455-1.CrossRefGoogle Scholar
  21. Lopes-Assad, M.L., R.S. Boschi, E. Nomura, B.A. Evangelista, and J.S.V. Silva. 2007. Soil information to improve the Brazilian agricultural zoning of climatic risks. Congresso Brasileiro de Agrometeorologia, 15, Aracaju, Brazil. https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/8309/1/PLUsoLopesAssad2007.pdf.
  22. Marcuzzo, F.F.N., and V. Romero. 2013. Influence of El Niño and La Niña on the daily maximum rainfall at the State of Goiás, Brazil. Revista Brasileira de Meteorologia 28: 429–440.CrossRefGoogle Scholar
  23. Marin, F.R., P.C. Sentelhas, and N.A. Villa Nova. 2000. Influence of El Niño and La Niña on the climate of Piracicaba, SP, Brazil. Revista Brasileira de Meteorologia 15: 123–129.Google Scholar
  24. Minchio, C.A., M.G. Canteri, and L.H. Fantin. 2016. Soybean rust epidemics in Rio Grande do Sul explained by ENSO phenomenon and off-season disease incidence. Summa Phytopathologica 42: 321–326.CrossRefGoogle Scholar
  25. Minuzzi, R.B., G.C. Sediyama, J.M.N. Costa, and R.L. Vianello. 2007. Influence of La Niña on the rainy season of the Southeast of Brazil. Revista Brasileira de Meteorologia 22: 345–353.CrossRefGoogle Scholar
  26. Monteiro, L.A., and P.C. Sentelhas. 2013. Potential and actual sugarcane yields in Southern Brazil as a function of climatic conditions and crop management. Sugar Tech 16: 264–276.  https://doi.org/10.1007/s12355-013-0275-0.CrossRefGoogle Scholar
  27. Monteiro, L.A., and P.C. Sentelhas. 2017. Sugarcane yield gap: can it be determined at national level with a simple agrometeorological model? Crop and Pasture Science 68: 272–284.  https://doi.org/10.1071/CP16334.CrossRefGoogle Scholar
  28. NOAA. 2018. Cold and Warm Episodes by Season. Climate Prediction Center—National Oceanic and Atmospheric Administration (NOAA). http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php. Accessed 10 July 2018.
  29. Nóbrega, R.S., J.A.P. Araújo, A.C. Paiva Neto, E.C.S. Mello, D.B. Soares, F.A.M. Saraiva, and W.M. Souza. 2000. O Fenômeno El-Niño e a influência conjunta do dipolo do Atlântico no Estado do Ceará. Congresso Brasileiro de Meteorologia, 11. Rio de Janeiro, Brazil. http://www.cbmet.org.br/cbm-files/12-3697e0146880af836b2e7e468e5fcb41.pdf.
  30. Oliveira, G.O., and P.O. Satyamurty. 1998. El Niño de 1997/98: Evolução e Impactos no Brasil. Congresso Brasileiro de Meteorologia, 10. Brasília, Brazil. http://mtc-m16b.sid.inpe.br/col/sid.inpe.br/iris@1915/2005/03.21.18.30/doc/Oliveira_O%20El%20nino%20de%201997_98.pdf.
  31. Oliveira, G.S. 2001. O El Niño e Você—O Fenômeno Climático. São José dos Campos: Editora Transtec.Google Scholar
  32. Paula, G.M., N.A. Streck, A.J. Zanon, F.L. Eltz, A.B. Heldwein, and S.E.T. Ferraz. 2010. Influence of El Niño phenomenon on the erosivity of rainfall at Santa Maria, RS, Brazil. Revista Brasileria de Ciência do Solo 34: 1315–1323.  https://doi.org/10.1590/S0100-06832010000400028.CrossRefGoogle Scholar
  33. Pezza, A.B., and T. Ambrizzi. 2002. Relationships between the Pacific and Atlantic surface temperature anomalies and temperature, frost and rain at the IAG/USP weather station in São Paulo, Brazil during the wintertime. Revista Brasileria de Meteorologia 17: 165–179.Google Scholar
  34. Rolim, G.S., N.B. Caporusso, V.B. Moreto, and A. Prela-Pantano. 2015. Influence of El Niño and La Niña on sugarcane yield and sucrose production in northern São Paulo, Brazil. Australian Journal of Crop Science 9: 509–516.Google Scholar
  35. Vianna, M.S., and P.C. Sentelhas. 2014. Simulação do risco de déficit hídrico em regiões de expansão do cultivo de cana-de-açúcar no Brasil. Pesquisa Agropecuária Brasileira 49: 237–246.CrossRefGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 2019

Authors and Affiliations

  1. 1.Department of Biosystems Engineering, ESALQUniversity of São PauloPiracicabaBrazil
  2. 2.Department of Soil Science and Agricultural EngineeringState University of Ponta GrossaPonta GrossaBrazil

Personalised recommendations