Advertisement

Sugar Tech

, Volume 21, Issue 6, pp 995–1002 | Cite as

Valorization of Ethiopian Sugarcane Bagasse to Assess its Suitability for Pulp and Paper Production

  • Medhanit Mamaye
  • Zebene Kiflie
  • Sisay Feleke
  • Abubeker Yimam
  • S. Anuradha JabasinghEmail author
Research Article
  • 43 Downloads

Abstract

This research provides an assessment of the Ethiopian sugarcane bagasse (ESCB) and examines its suitability for the pulp and paper production. The study is focused toward carrying out the physical fractionation pretreatment on the ESCB aiming at the reduction of its lignin, extractive, silica and ash content. A measurement on the chemical composition was carried out to determine the cellulose, lignin, holocellulose, ash and silica content. Furthermore, cold and hot water solubility, 1% NaOH solubility and the presence of ethanol–toluene extractives were measured. Chemical composition analysis of sugarcane bagasse revealed a good level of cellulose (≈ 50%) and Klason lignin content (< 30%). The measurement of the ESCB fiber dimensions (fiber length of 1.86 mm, fiber diameter of 30.02 µm, cell-wall thickness of 2.53 µm) advocates its application in the paper and pulp industry. The physical fractionation pretreatment had a significant effect on reducing the lignin, extractive, ash and silica content in the ESCB, as could be evidenced from the FTIR analysis. These results demonstrate the efficacy of Ethiopian sugarcane bagasse and validate it as a suitable raw material for pulp and paper industry.

Keywords

Valorization Bagasse Cellulose Lignin Fiber length Physical fractionation 

Notes

Acknowledgements

The first author is very grateful to Addis Ababa Institute of Technology for financial support, Hawassa Institute of Technology, for the study leave and Wood Technology Research Center of the Ethiopian Environment and Forest Research Institute for the laboratory support. The comments and recommendations of the anonymous reviewers and the Editor-in-Chief, Dr. R.P. Rao, are greatly acknowledged.

References

  1. Agnihotri, S., D. Dutt, and C.H. Tyagi. 2010. Complete characterization of bagasse of early species of Saccharum officinerum-CO 89003 for pulp and paper making. BioResources 5: 1197–1214.Google Scholar
  2. Alila, S., I. Besbes, M. Rei, P. Mutjé, and S. Boufi. 2013. Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): A comparative study. Industrial Crops and Products 41: 250–259.CrossRefGoogle Scholar
  3. Andrade, M.F., and J.L. Colodette. 2014. Dissolving pulp production from sugar cane bagasse. Industrial Crops and Products 52: 58–64.CrossRefGoogle Scholar
  4. Anuradha Jabasingh, S. 2011. Response surface methodology for the evaluation and comparison of cellulase production by Aspergillus nidulans SU04 and Aspergillus nidulans MTCC344 cultivated on pretreated sugarcane bagasse. Chemical and Biochemical Engineering Quarterly 25: 501–511.Google Scholar
  5. Anuradha Jabasingh, S., Habtamu B, and Y. Abubeker. 2018. Iron oxide induced bagasse nanoparticles for the sequestration of Cr6+ ions from tannery effluent using a modified batch reactor. Journal of Applied Polymer Science 135: 46683.CrossRefGoogle Scholar
  6. Anuradha Jabasingh, S., and C. Valli Nachiyar. 2012. Optimization of cellulasesynthesis by RSM and evaluation of ethanol production from enzymatically hydrolyzed sugarcane bagasse using Saccharomyces cerevisiae. Journal of Scientific and Industrial Research 71: 353–359.Google Scholar
  7. Anuradha Jabasingh, S., and C. Valli Nachiyar. 2011. Utilization of pretreated bagasse for the sustainable bioproduction of cellulase by Aspergillus nidulans MTCC344 using Response surface methodology. Industrial Crops and Products 34(3): 1564–1571.CrossRefGoogle Scholar
  8. Anuradha Jabasingh, S., D. Lalith, M. Arun Prabhu, Y. Abubekker, and Z. Taye. 2016. Catalytic conversion of sugarcane bagasse to cellulosic ethanol: TiO2 coupled nanocellulose as an effective hydrolysis enhancer. Carbhohydrate Polymers 136: 700–709.CrossRefGoogle Scholar
  9. Ayele, N., A. Getaneh, T. Negi, and Z. Dilnesaw. 2014. Effect of planting density on yield and yield components of sugarcane at Wonji-Shoa. Scholarly Journal of Agricultural Science 4(12): 583–586.Google Scholar
  10. Birhanu, A. 2014. Environmental degradation and management in Ethiopian highlands. International Journal of Environmental Protection and Policy 2: 24–34.CrossRefGoogle Scholar
  11. Camarero, S., O. García, T. Vidal, J. Colom, J.C. Del Río, A. Gutiérrez, and Á.T. Martínez. 2004. Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme and Microbial Technology 35: 113–120.CrossRefGoogle Scholar
  12. Cao, S., L. Lin, F. Huang, L. Huang, and L. Chen. 2014. Morphological and chemical characterization of green bamboo (Dendrocalamopsis oldhami (Munro) Keng f.) for dissolving pulp production. BioResources 9: 4528–4539.CrossRefGoogle Scholar
  13. Caparrós, S., M.J. Díaz, J. Ariza, F. López, and L. Jiménez. 2008. New perspectives for Paulownia fortunei L. valorisation of the autohydrolysis and pulping processes. Bioresource Technology 99: 741–749.CrossRefGoogle Scholar
  14. Chen, H., C. Ferrari, M. Angiuli, J. Yao, C. Raspi, and E. Bramanti. 2010. Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydrate Polymers 82: 772–778.CrossRefGoogle Scholar
  15. Hamzeh, Y., A. Ashori, Z. Khorasani, A. Abdulkhani, and A. Abyaz. 2013. Pre-extraction of hemicelluloses from bagasse fibers: Effects of dry-strength additives on paper properties. Industrial Crops and Products 43: 365–371.CrossRefGoogle Scholar
  16. Hemmasi, A.H., A. Samariha, A. Tabei, M. Nemati, and A. Khakifirooz. 2011. Study of morphological and chemical composition of fibers from iranian sugarcane bagasse. American-Eurasian Journal of Agricultural and Environmental Sciences 11: 478–481.Google Scholar
  17. Iskalieva, A., B. Mbouyem, P.R. Gogate, M. Horvath, P.G. Horvath, and L. Csoka. 2012. Ultrasonics sonochemistry cavitation assisted delignification of wheat straw: A review. Ultrasonics Sonochemistry 19: 984–993.CrossRefGoogle Scholar
  18. Jimenez, L., A. Rodriguez, P. Antonio, A. Moral, and L. Serrano. 2008. Alternative raw materials and pulping process using clean technologies. Industrial Crops and Products 28: 11–16.CrossRefGoogle Scholar
  19. Kaur, D., N. Kant, and R. Kumar. 2017. Prospects of rice straw as a raw material for paper making. Waste Management 60: 127–139.CrossRefGoogle Scholar
  20. Khakifirooz, A., F. Ravanbakhsh, A. Samariha, and M. Kiaei. 2013. Investigating the possibility of chemi-mechanical pulping of bagasse. BioResources 8: 21–30.Google Scholar
  21. Kiaei, M., M. Tajik, and R. Vaysi. 2014. Chemical and biometrical properties of plum wood and its application in pulp and paper production. Maderas: Science and Technology 16: 313–322.Google Scholar
  22. Kissinger, M., J. Fix, and W.E. Rees. 2006. Wood and non-wood pulp production: Comparative ecological footprinting on the Canadian prairies. Ecological Economics 62: 552–558.CrossRefGoogle Scholar
  23. Lei, Y., S. Liu, J. Li, and R. Sun. 2010. Effect of hot-water extraction on alkaline pulping of bagasse. Biotechnology Advances 28: 609–612.CrossRefGoogle Scholar
  24. Mekonnen, T., M. Diro, M. Sharma, and T. Negi. 2014. Protocol optimization for in vitro mass propagation of two sugarcane (Saccharum officinarum L.) clones grown in Ethiopia. African Journal of Biotechnology 13: 1358–1368.CrossRefGoogle Scholar
  25. Mercy, O.B., F.J. Adeola, O.A. Olajide, A. Babatunde, and F. James. 2017. Evaluation of fiber characteristics of Ricinodedron Heudelotii (Baill, Pierre Ex Pax) for pulp and paper making. International Journal of Science and Technology 6: 634–641.Google Scholar
  26. Mesfin, B., S. Anuradha Jabasingh, and K. Zebene. 2017. Expanding sustenance in Ethiopia based on renewable energy resources-A comprehensive review. Renewable and Sustainable Energy Reviews 75: 1035–1045.CrossRefGoogle Scholar
  27. Miranda, I., J. Gominho, and H. Pereira. 2012. Incorporation of bark and tops in Eucalyptus globulus wood pulping. BioResources 7: 4350–4361.Google Scholar
  28. Mohieldin, S.D. 2014. Pretreatment approaches in non-wood plants for pulp and paper production: A review. Forest Products and Industries 3: 84–88.Google Scholar
  29. Poletto, M., A.J. Zattera, and R.M.C. Santana. 2012. Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. Journal of Applied Polymer Science 126: 336–343.CrossRefGoogle Scholar
  30. Przybysz, K., E. Malachowska, D. Martyniak, P. Boruszewski, J. Howska, H. Kalinowska, and P. Przybysz. 2018. Yield of pulp, dimensional properties of fibers, and properties of paper produced from fast growing trees and grasses. BioResources 13: 1372–1387.CrossRefGoogle Scholar
  31. Rodrıguez, A., A. Moral, L. Serrano, J. Labidi, and L. Jimenez. 2008. Rice straw pulp obtained by using various methods. Bioresource Technology 99: 2881–2886.CrossRefGoogle Scholar
  32. Sable, I., U. Grinfelds, A. Jansons, L. Vikele, I. Irbe, A. Verovkins, and A. Treimanis. 2012. Comparison of the properties of wood and pulp fibers from lodgepole pine (Pinus contorta) and Scots pine (Pinus sylvestris). BioResources 7: 1771–1783.CrossRefGoogle Scholar
  33. Samariha, A., and A. Khakifirooz. 2011. Application of NSSC pulping to sugarcane bagasse. BioResources 6: 3313–3323.Google Scholar
  34. Sugesty, S., T. Kardiansyah, and H. Hardiani. 2015. Bamboo as raw materials for dissolving pulp with environmental friendly technology for rayon fiber. Procedia Chemistry 17: 194–199.CrossRefGoogle Scholar
  35. Ververis, C., K. Georghiou, N. Christodoulakis, P. Santas, and R. Santas. 2004. Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial Crops and Products 19: 245–254.CrossRefGoogle Scholar
  36. Vila, C., J. Romero, J.L. Francisco, G. Garrote, and J.C. Parajó. 2011. Extracting value from Eucalyptus wood before kraft pulping: Effects of hemicelluloses solubilization on pulp properties. Bioresource Technology 102: 5251–5254.CrossRefGoogle Scholar
  37. Xu, F., J. Yu, T. Tesso, F. Dowell, and D. Wang. 2013. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mine-review. Applied Energy 104: 801–809.CrossRefGoogle Scholar
  38. Zhao, X., and D. Liu. 2012. Fractionating pretreatment of sugarcane bagasse by aqueous formic acid with direct recycle of spent liquor to increase cellulose digestibility the Formiline process. Bioresource Technology 117: 25–32.CrossRefGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 2019

Authors and Affiliations

  • Medhanit Mamaye
    • 1
  • Zebene Kiflie
    • 1
  • Sisay Feleke
    • 2
  • Abubeker Yimam
    • 1
  • S. Anuradha Jabasingh
    • 1
    Email author
  1. 1.Process Engineering Division, School of Chemical and Bio EngineeringAddis Ababa Institute of Technology, Addis Ababa UniversityAddis AbabaEthiopia
  2. 2.Ethiopian Agricultural Research Council SecretariatAddis AbabaEthiopia

Personalised recommendations